Alzheimer's disease risk ABCA7 p.A696S variant disturbs the microglial response to amyloid pathology in mice.

IF 5.1 2区 医学 Q1 NEUROSCIENCES Neurobiology of Disease Pub Date : 2025-01-27 DOI:10.1016/j.nbd.2025.106813
Xiaoye Ma, Dmitry Prokopenko, Ni Wang, Tomonori Aikawa, Younjung Choi, Can Zhang, Dan Lei, Yingxue Ren, Keiji Kawatani, Skylar C Starling, Ralph B Perkerson, Bhaskar Roy, Astrid C Quintero, Tammee M Parsons, Yining Pan, Zonghua Li, Minghui Wang, Hanmei Bao, Xianlin Han, Guojun Bu, Rudolph E Tanzi, Takahisa Kanekiyo
{"title":"Alzheimer's disease risk ABCA7 p.A696S variant disturbs the microglial response to amyloid pathology in mice.","authors":"Xiaoye Ma, Dmitry Prokopenko, Ni Wang, Tomonori Aikawa, Younjung Choi, Can Zhang, Dan Lei, Yingxue Ren, Keiji Kawatani, Skylar C Starling, Ralph B Perkerson, Bhaskar Roy, Astrid C Quintero, Tammee M Parsons, Yining Pan, Zonghua Li, Minghui Wang, Hanmei Bao, Xianlin Han, Guojun Bu, Rudolph E Tanzi, Takahisa Kanekiyo","doi":"10.1016/j.nbd.2025.106813","DOIUrl":null,"url":null,"abstract":"<p><p>The adenosine triphosphate-binding cassette transporter A7 (ABCA7) gene is ranked as one of the top susceptibility loci for Alzheimer's disease (AD). While ABCA7 mediates lipid transport across cellular membranes, ABCA7 loss of function has been shown to exacerbate amyloid-β (Aβ) pathology and compromise microglial function. Our family-based study uncovered an extremely rare ABCA7 p.A696S variant that was substantially segregated with the development of AD in 3 African American families. Using the knockin mouse model, we investigated the effects of ABCA7-A696S substitution on amyloid pathology and brain immune response in 5xFAD transgenic mice. Importantly, our study demonstrated that ABCA7-A696S substitution reduces amyloid plaque-associated microgliosis and increases dystrophic neurites around amyloid deposits compared to control mice. We also found increased X-34-positive amyloid plaque burden in 5xFAD mice with ABCA7-A696S substitution, while there was no evident difference in insoluble Aβ levels between mouse groups. Thus, ABCA7-A696S substitution may disrupt amyloid compaction resulting in aggravated neuritic dystrophy due to insufficient microglia barrier function. In addition, we observed that ABCA7-A696S substitution disturbs the induction of proinflammatory cytokines interleukin 1β and interferon γ in the brains of 5xFAD mice, although some disease-associated microglia gene expression, including Trem2 and Tyrobp, are upregulated. Lipidomics also detected higher total lysophosphatidylethanolamine levels in the brains of 5xFAD mice with ABCA7-A696S substitution than controls. These results suggest that ABCA7-A696S substitution might compromise the adequate innate immune response to amyloid pathology in AD by modulating brain lipid metabolism, providing novel insight into the pathogenic mechanisms mediated by ABCA7. ONE SENTENCE SUMMARY: A rare Alzheimer's disease risk ABCA7 p.A696S variant compromises microglial response to amyloid pathology.</p>","PeriodicalId":19097,"journal":{"name":"Neurobiology of Disease","volume":" ","pages":"106813"},"PeriodicalIF":5.1000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.nbd.2025.106813","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The adenosine triphosphate-binding cassette transporter A7 (ABCA7) gene is ranked as one of the top susceptibility loci for Alzheimer's disease (AD). While ABCA7 mediates lipid transport across cellular membranes, ABCA7 loss of function has been shown to exacerbate amyloid-β (Aβ) pathology and compromise microglial function. Our family-based study uncovered an extremely rare ABCA7 p.A696S variant that was substantially segregated with the development of AD in 3 African American families. Using the knockin mouse model, we investigated the effects of ABCA7-A696S substitution on amyloid pathology and brain immune response in 5xFAD transgenic mice. Importantly, our study demonstrated that ABCA7-A696S substitution reduces amyloid plaque-associated microgliosis and increases dystrophic neurites around amyloid deposits compared to control mice. We also found increased X-34-positive amyloid plaque burden in 5xFAD mice with ABCA7-A696S substitution, while there was no evident difference in insoluble Aβ levels between mouse groups. Thus, ABCA7-A696S substitution may disrupt amyloid compaction resulting in aggravated neuritic dystrophy due to insufficient microglia barrier function. In addition, we observed that ABCA7-A696S substitution disturbs the induction of proinflammatory cytokines interleukin 1β and interferon γ in the brains of 5xFAD mice, although some disease-associated microglia gene expression, including Trem2 and Tyrobp, are upregulated. Lipidomics also detected higher total lysophosphatidylethanolamine levels in the brains of 5xFAD mice with ABCA7-A696S substitution than controls. These results suggest that ABCA7-A696S substitution might compromise the adequate innate immune response to amyloid pathology in AD by modulating brain lipid metabolism, providing novel insight into the pathogenic mechanisms mediated by ABCA7. ONE SENTENCE SUMMARY: A rare Alzheimer's disease risk ABCA7 p.A696S variant compromises microglial response to amyloid pathology.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurobiology of Disease
Neurobiology of Disease 医学-神经科学
CiteScore
11.20
自引率
3.30%
发文量
270
审稿时长
76 days
期刊介绍: Neurobiology of Disease is a major international journal at the interface between basic and clinical neuroscience. The journal provides a forum for the publication of top quality research papers on: molecular and cellular definitions of disease mechanisms, the neural systems and underpinning behavioral disorders, the genetics of inherited neurological and psychiatric diseases, nervous system aging, and findings relevant to the development of new therapies.
期刊最新文献
Whole transcriptome analysis of unmutated sporadic ALS patients' peripheral blood reveals phenotype-specific gene expression signature. Alpha-synuclein pathology enhances peripheral and CNS immune responses to bacterial endotoxins. Synaptic modulation of glutamate in striatum of the YAC128 mouse model of Huntington disease. Globular-shaped Aβ oligomers have diverse mechanisms for promoting Aβ aggregations with the facilitation of fibril elongation. Peripheral nerve injury induces dystonia-like movements and dysregulation in the energy metabolism: A multi-omics descriptive study in Thap1+/- mice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1