Enhanced Bayesian model for multienvironmental selection of winter hybrids maize: assessing grain yield using 'ProbBreed'.

IF 4.7 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Plant Methods Pub Date : 2025-01-29 DOI:10.1186/s13007-025-01327-2
Bikas Basnet, Chitra Bahadur Kunwar, Umisha Upreti
{"title":"Enhanced Bayesian model for multienvironmental selection of winter hybrids maize: assessing grain yield using 'ProbBreed'.","authors":"Bikas Basnet, Chitra Bahadur Kunwar, Umisha Upreti","doi":"10.1186/s13007-025-01327-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Crossover interactions stemming from phenotypic plasticity complicate selection decisions when evaluating hybrid maize with superior grain yield and consistent performance. Consequently, a two-year, region-wide investigation of 45 hybrids maize across Nepal was performed with the aim of disclosing both site and wide adapted hybrids. Utilizing an innovative \"ProbBreed\" package, based on Bayesian probability analysis of randomized complete block designs with three replicated trials at each station, this study substantively streamlines hybrids maize selection.</p><p><strong>Results: </strong>This finding revealed substantial genetic, environmental, and interactive influences on grain yield (p < 0.05). Among the hybrids, DKC9149 (8.8 tons/ha) emerged as the elite with probability coefficient of (0.39), followed by NK6607(0.35 & 8.6 tons/ha). Joint probability analysis identified RMH1899 super (0.23 & 8.3 tons/ha), followed by RMH 666 (0.15 & 8.4 tons/ha) and Uttam 121 (0.11 & 8.6 tons/ha), all of which accounted for overall environmental conditions. Additionally, over the years, DKC 9149, NK 6607(0.18 & 8.6 tons/ha), GK 3254(0.18 & 8.5 tons/ha), Shann 111(0.12 & 8.4 tons/ha), Sweety 1(0.13 & 8.4 tons/ha), and ADV 756(0.10 & 8.2 tons/ha) consistently demonstrated superior performance and stability. Delving with site specific recommendations include Nepalgunj: RMH 9999(8.5 tons/ha), NK 6607(8.6 tons/ha); Parwanipur: DKC 9149, MM 2033(8.5 tons/ha); Rampur: ADV 756, DKC 9149, MM 2929(8.6 tons/ha); and Tarahara: GK 3254(8.5 tons/ha), NK 6607(8.6 tons/ha), Uttam 121.</p><p><strong>Conclusion: </strong>Thus, Selected hybrids are predicted to outperform within the recommended domain. Over and above, integrating genomic information into Bayesian models expected to enhance prediction accuracy and expedite breeding progress.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"21 1","pages":"8"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11776175/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13007-025-01327-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Crossover interactions stemming from phenotypic plasticity complicate selection decisions when evaluating hybrid maize with superior grain yield and consistent performance. Consequently, a two-year, region-wide investigation of 45 hybrids maize across Nepal was performed with the aim of disclosing both site and wide adapted hybrids. Utilizing an innovative "ProbBreed" package, based on Bayesian probability analysis of randomized complete block designs with three replicated trials at each station, this study substantively streamlines hybrids maize selection.

Results: This finding revealed substantial genetic, environmental, and interactive influences on grain yield (p < 0.05). Among the hybrids, DKC9149 (8.8 tons/ha) emerged as the elite with probability coefficient of (0.39), followed by NK6607(0.35 & 8.6 tons/ha). Joint probability analysis identified RMH1899 super (0.23 & 8.3 tons/ha), followed by RMH 666 (0.15 & 8.4 tons/ha) and Uttam 121 (0.11 & 8.6 tons/ha), all of which accounted for overall environmental conditions. Additionally, over the years, DKC 9149, NK 6607(0.18 & 8.6 tons/ha), GK 3254(0.18 & 8.5 tons/ha), Shann 111(0.12 & 8.4 tons/ha), Sweety 1(0.13 & 8.4 tons/ha), and ADV 756(0.10 & 8.2 tons/ha) consistently demonstrated superior performance and stability. Delving with site specific recommendations include Nepalgunj: RMH 9999(8.5 tons/ha), NK 6607(8.6 tons/ha); Parwanipur: DKC 9149, MM 2033(8.5 tons/ha); Rampur: ADV 756, DKC 9149, MM 2929(8.6 tons/ha); and Tarahara: GK 3254(8.5 tons/ha), NK 6607(8.6 tons/ha), Uttam 121.

Conclusion: Thus, Selected hybrids are predicted to outperform within the recommended domain. Over and above, integrating genomic information into Bayesian models expected to enhance prediction accuracy and expedite breeding progress.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Methods
Plant Methods 生物-植物科学
CiteScore
9.20
自引率
3.90%
发文量
121
审稿时长
2 months
期刊介绍: Plant Methods is an open access, peer-reviewed, online journal for the plant research community that encompasses all aspects of technological innovation in the plant sciences. There is no doubt that we have entered an exciting new era in plant biology. The completion of the Arabidopsis genome sequence, and the rapid progress being made in other plant genomics projects are providing unparalleled opportunities for progress in all areas of plant science. Nevertheless, enormous challenges lie ahead if we are to understand the function of every gene in the genome, and how the individual parts work together to make the whole organism. Achieving these goals will require an unprecedented collaborative effort, combining high-throughput, system-wide technologies with more focused approaches that integrate traditional disciplines such as cell biology, biochemistry and molecular genetics. Technological innovation is probably the most important catalyst for progress in any scientific discipline. Plant Methods’ goal is to stimulate the development and adoption of new and improved techniques and research tools and, where appropriate, to promote consistency of methodologies for better integration of data from different laboratories.
期刊最新文献
Genetic transformation of the oilseed crop camelina using immature zygotic embryos. Spectral estimation of the aboveground biomass of cotton under water-nitrogen coupling conditions. DWTFormer: a frequency-spatial features fusion model for tomato leaf disease identification. Benefiting from the past: establishing in vitro culture of European beech (Fagus sylvatica L.) from provenance trial trees and seedlings. The genetic puzzle of multicopy genes: challenges and troubleshooting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1