Mechanical properties of a polylactic 3D-printed interim crown after thermocycling.

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES PLoS ONE Pub Date : 2025-01-30 eCollection Date: 2025-01-01 DOI:10.1371/journal.pone.0318217
Re-Mee Doh, Won-Il Choi, Seo Young Kim, Bock-Young Jung
{"title":"Mechanical properties of a polylactic 3D-printed interim crown after thermocycling.","authors":"Re-Mee Doh, Won-Il Choi, Seo Young Kim, Bock-Young Jung","doi":"10.1371/journal.pone.0318217","DOIUrl":null,"url":null,"abstract":"<p><p>Polylactic acid (PLA) has garnered attention for use in interim dental restorations due to its biocompatibility, biodegradability, low cost, ease of fabrication, and moderate strength. However, its performance under intraoral conditions, particularly under heat and moisture, remains underexplored. This study evaluated the mechanical properties of PLA interim crowns compared with those of polymethylmethacrylate (PMMA) and bisphenol crowns under simulated intraoral conditions with thermocycling. Three CAD/CAM polymers-PMMA (milling), PLA (fused deposition), and bisphenol (stereolithography)-were tested for fracture resistance, hardness, and surface roughness. For fracture strength, 25 crowns from each group were cemented onto dies. The Shore D hardness and surface roughness were measured on round discs before and after 10,000 thermocycles (5°C/55°C). The surface topography was assessed via scanning electron microscopy. PMMA exhibited the highest fracture strength (2787.93 N), followed by bisphenol (2165.47 N) and PLA (2088.78 N), with no significant difference between the latter two. PMMA and bisphenol showed vertical fractures and cracks, whereas PLA showed crown tearing or die deformation. Bisphenol had the highest Shore D hardness, followed by PMMA and PLA, with no significant changes after thermocycling. The surface roughness (Ra) was lowest for bisphenol and similar between PMMA and PLA. The roughness (Rz) increased from bisphenol to PMMA to PLA. The roughness of the PMMA remained unchanged after thermocycling, whereas the Ra but not the Rz of the PLA increased. Bisphenol showed a significant increase in both Ra and Rz (p<0.0001). In conclusion, PLA interim crowns demonstrated mechanical properties comparable to those of conventional PMMA and bisphenol crowns after thermocycling.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 1","pages":"e0318217"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11781676/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0318217","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Polylactic acid (PLA) has garnered attention for use in interim dental restorations due to its biocompatibility, biodegradability, low cost, ease of fabrication, and moderate strength. However, its performance under intraoral conditions, particularly under heat and moisture, remains underexplored. This study evaluated the mechanical properties of PLA interim crowns compared with those of polymethylmethacrylate (PMMA) and bisphenol crowns under simulated intraoral conditions with thermocycling. Three CAD/CAM polymers-PMMA (milling), PLA (fused deposition), and bisphenol (stereolithography)-were tested for fracture resistance, hardness, and surface roughness. For fracture strength, 25 crowns from each group were cemented onto dies. The Shore D hardness and surface roughness were measured on round discs before and after 10,000 thermocycles (5°C/55°C). The surface topography was assessed via scanning electron microscopy. PMMA exhibited the highest fracture strength (2787.93 N), followed by bisphenol (2165.47 N) and PLA (2088.78 N), with no significant difference between the latter two. PMMA and bisphenol showed vertical fractures and cracks, whereas PLA showed crown tearing or die deformation. Bisphenol had the highest Shore D hardness, followed by PMMA and PLA, with no significant changes after thermocycling. The surface roughness (Ra) was lowest for bisphenol and similar between PMMA and PLA. The roughness (Rz) increased from bisphenol to PMMA to PLA. The roughness of the PMMA remained unchanged after thermocycling, whereas the Ra but not the Rz of the PLA increased. Bisphenol showed a significant increase in both Ra and Rz (p<0.0001). In conclusion, PLA interim crowns demonstrated mechanical properties comparable to those of conventional PMMA and bisphenol crowns after thermocycling.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
PLoS ONE
PLoS ONE 生物-生物学
CiteScore
6.20
自引率
5.40%
发文量
14242
审稿时长
3.7 months
期刊介绍: PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides: * Open-access—freely accessible online, authors retain copyright * Fast publication times * Peer review by expert, practicing researchers * Post-publication tools to indicate quality and impact * Community-based dialogue on articles * Worldwide media coverage
期刊最新文献
Adaptive wavelet base selection for deep learning-based ECG diagnosis: A reinforcement learning approach. Neuronal oscillations and functional connectivity of paced nostril breathing: A high-density EEG study. Analysis of financial convergence between the BRICS and OECD countries. Parental mediation and the use of social networks: A systematic review. Physical determinants of daily physical activity in older men and women.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1