A look beyond topography: Transient phenomena of Escherichia coli cell division captured with high-speed in-line force mapping

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Science Advances Pub Date : 2025-01-29 DOI:10.1126/sciadv.ads3010
Christian Ganser, Shigetaka Nishiguchi, Feng-Yueh Chan, Takayuki Uchihashi
{"title":"A look beyond topography: Transient phenomena of Escherichia coli cell division captured with high-speed in-line force mapping","authors":"Christian Ganser,&nbsp;Shigetaka Nishiguchi,&nbsp;Feng-Yueh Chan,&nbsp;Takayuki Uchihashi","doi":"10.1126/sciadv.ads3010","DOIUrl":null,"url":null,"abstract":"<div >Life on the nanoscale has been made accessible in recent decades by the development of fast and noninvasive techniques. High-speed atomic force microscopy (HS-AFM) is one such technique that shed light on single protein dynamics. Extending HS-AFM to effortlessly incorporate mechanical property mapping while maintaining fast imaging speed allows a look deeper than topography and reveal details of nanoscale mechanisms that govern life. Here, we present high-speed in-line force mapping (HS-iFM) to record mechanical properties and topography maps with high spatiotemporal resolution. Using HS-iFM, a comprehensive study of the nanoscale mechanical properties of living <i>Escherichia coli</i> revealed localized stiffening and details during cell division, formation and diffusion of pores in the membrane, and the impact of depressurization of a cell. The frame time was as low as 15 seconds with a spatial resolution of 5.5 nanometers per pixel in topography and 22 nanometers per pixel in force maps, allowing the capture of transient phenomena on bacterial surfaces in striking detail.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 5","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11777186/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.ads3010","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Life on the nanoscale has been made accessible in recent decades by the development of fast and noninvasive techniques. High-speed atomic force microscopy (HS-AFM) is one such technique that shed light on single protein dynamics. Extending HS-AFM to effortlessly incorporate mechanical property mapping while maintaining fast imaging speed allows a look deeper than topography and reveal details of nanoscale mechanisms that govern life. Here, we present high-speed in-line force mapping (HS-iFM) to record mechanical properties and topography maps with high spatiotemporal resolution. Using HS-iFM, a comprehensive study of the nanoscale mechanical properties of living Escherichia coli revealed localized stiffening and details during cell division, formation and diffusion of pores in the membrane, and the impact of depressurization of a cell. The frame time was as low as 15 seconds with a spatial resolution of 5.5 nanometers per pixel in topography and 22 nanometers per pixel in force maps, allowing the capture of transient phenomena on bacterial surfaces in striking detail.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
期刊最新文献
Noncontact microbiota transplantation by core-shell microgel-enabled nonleakage envelopment Mortality drives production dynamics of Atlantic cod through 1100 years of commercial fishing Marine reserves contribute half of the larval supply to a coral reef fishery Role of von Willebrand factor, platelets, and aberrant flow in the initiation of venous thrombosis Succinylation enables IDE to act as a hub of larval tissue destruction and adult tissue reconstruction during insect metamorphosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1