Christian Ganser, Shigetaka Nishiguchi, Feng-Yueh Chan, Takayuki Uchihashi
{"title":"A look beyond topography: Transient phenomena of Escherichia coli cell division captured with high-speed in-line force mapping","authors":"Christian Ganser, Shigetaka Nishiguchi, Feng-Yueh Chan, Takayuki Uchihashi","doi":"10.1126/sciadv.ads3010","DOIUrl":null,"url":null,"abstract":"<div >Life on the nanoscale has been made accessible in recent decades by the development of fast and noninvasive techniques. High-speed atomic force microscopy (HS-AFM) is one such technique that shed light on single protein dynamics. Extending HS-AFM to effortlessly incorporate mechanical property mapping while maintaining fast imaging speed allows a look deeper than topography and reveal details of nanoscale mechanisms that govern life. Here, we present high-speed in-line force mapping (HS-iFM) to record mechanical properties and topography maps with high spatiotemporal resolution. Using HS-iFM, a comprehensive study of the nanoscale mechanical properties of living <i>Escherichia coli</i> revealed localized stiffening and details during cell division, formation and diffusion of pores in the membrane, and the impact of depressurization of a cell. The frame time was as low as 15 seconds with a spatial resolution of 5.5 nanometers per pixel in topography and 22 nanometers per pixel in force maps, allowing the capture of transient phenomena on bacterial surfaces in striking detail.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 5","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11777186/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.ads3010","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Life on the nanoscale has been made accessible in recent decades by the development of fast and noninvasive techniques. High-speed atomic force microscopy (HS-AFM) is one such technique that shed light on single protein dynamics. Extending HS-AFM to effortlessly incorporate mechanical property mapping while maintaining fast imaging speed allows a look deeper than topography and reveal details of nanoscale mechanisms that govern life. Here, we present high-speed in-line force mapping (HS-iFM) to record mechanical properties and topography maps with high spatiotemporal resolution. Using HS-iFM, a comprehensive study of the nanoscale mechanical properties of living Escherichia coli revealed localized stiffening and details during cell division, formation and diffusion of pores in the membrane, and the impact of depressurization of a cell. The frame time was as low as 15 seconds with a spatial resolution of 5.5 nanometers per pixel in topography and 22 nanometers per pixel in force maps, allowing the capture of transient phenomena on bacterial surfaces in striking detail.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.