Century-long West Antarctic snow accumulation changes induced by tropical teleconnections

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Science Advances Pub Date : 2025-01-29 DOI:10.1126/sciadv.adr2821
Kai Man, Jürg Luterbacher, David M. Holland, Naiming Yuan, Lei Geng, Yetang Wang, Yonggang Liu, Guitao Shi, Yurong Hou, Wenju Cai, Xichen Li
{"title":"Century-long West Antarctic snow accumulation changes induced by tropical teleconnections","authors":"Kai Man,&nbsp;Jürg Luterbacher,&nbsp;David M. Holland,&nbsp;Naiming Yuan,&nbsp;Lei Geng,&nbsp;Yetang Wang,&nbsp;Yonggang Liu,&nbsp;Guitao Shi,&nbsp;Yurong Hou,&nbsp;Wenju Cai,&nbsp;Xichen Li","doi":"10.1126/sciadv.adr2821","DOIUrl":null,"url":null,"abstract":"<div >Ice core measurements reveal dipole-like snow accumulation trends over West Antarctica throughout the 20th century, with an increase of &gt;2000 billion metric tons over the Antarctic Peninsula and Ellsworth Land but a decrease of ~500 billion metric tons over Marie Byrd Land. Although atmospheric teleconnections were frequently revealed, linking variability between tropics and higher latitudes on interannual and decadal timescales, centennial-scale teleconnection is absent from literature. Here, using statistical analysis and numerical experiments, we reveal that changes of tropical oceans throughout the 20th century drive the long-term Antarctic snowfall trend. A pronounced warming over the tropical Atlantic and a moderate cooling over the equatorial Pacific have driven an adjustment of moisture transport and thus snowfall pattern in West Antarctica. Our study reveals a centennial tropical-polar teleconnection, producing long-term trends with opposing changes across the regions. Remote forcing from the tropics increased the mass accumulation over Antarctica, balanced rapid iceshelf thinning in recent decades, contributing to global sea-level changes.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 5","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11777206/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adr2821","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Ice core measurements reveal dipole-like snow accumulation trends over West Antarctica throughout the 20th century, with an increase of >2000 billion metric tons over the Antarctic Peninsula and Ellsworth Land but a decrease of ~500 billion metric tons over Marie Byrd Land. Although atmospheric teleconnections were frequently revealed, linking variability between tropics and higher latitudes on interannual and decadal timescales, centennial-scale teleconnection is absent from literature. Here, using statistical analysis and numerical experiments, we reveal that changes of tropical oceans throughout the 20th century drive the long-term Antarctic snowfall trend. A pronounced warming over the tropical Atlantic and a moderate cooling over the equatorial Pacific have driven an adjustment of moisture transport and thus snowfall pattern in West Antarctica. Our study reveals a centennial tropical-polar teleconnection, producing long-term trends with opposing changes across the regions. Remote forcing from the tropics increased the mass accumulation over Antarctica, balanced rapid iceshelf thinning in recent decades, contributing to global sea-level changes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
期刊最新文献
Noncontact microbiota transplantation by core-shell microgel-enabled nonleakage envelopment Mortality drives production dynamics of Atlantic cod through 1100 years of commercial fishing Marine reserves contribute half of the larval supply to a coral reef fishery Role of von Willebrand factor, platelets, and aberrant flow in the initiation of venous thrombosis Succinylation enables IDE to act as a hub of larval tissue destruction and adult tissue reconstruction during insect metamorphosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1