{"title":"A researcher's guide to studying sex differences in immune aging.","authors":"Clayton Baker, Minhoo Kim, Bérénice A Benayoun","doi":"10.1016/j.molmed.2025.01.005","DOIUrl":null,"url":null,"abstract":"<p><p>Sex differences in immune system aging significantly impact disease susceptibility and vaccine responses among older adults, but with notable disparities between men and women. This area has gained importance because vaccines can exhibit differential efficacy by sex in aging populations, underscoring the need for sex-specific strategies. As the global population ages, understanding these sex-based immune differences is crucial for developing targeted interventions for age-related diseases. Addressing these disparities requires robust preclinical models that mimic human immune aging to uncover mechanisms and inform personalized approaches. In this review we assess the translational potential of preclinical mouse models in studying sex differences in immune aging, and emphasize the urgency of sex-specific interventions to improve health outcomes in older adults.</p>","PeriodicalId":23263,"journal":{"name":"Trends in molecular medicine","volume":" ","pages":""},"PeriodicalIF":12.8000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in molecular medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.molmed.2025.01.005","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Sex differences in immune system aging significantly impact disease susceptibility and vaccine responses among older adults, but with notable disparities between men and women. This area has gained importance because vaccines can exhibit differential efficacy by sex in aging populations, underscoring the need for sex-specific strategies. As the global population ages, understanding these sex-based immune differences is crucial for developing targeted interventions for age-related diseases. Addressing these disparities requires robust preclinical models that mimic human immune aging to uncover mechanisms and inform personalized approaches. In this review we assess the translational potential of preclinical mouse models in studying sex differences in immune aging, and emphasize the urgency of sex-specific interventions to improve health outcomes in older adults.
期刊介绍:
Trends in Molecular Medicine (TMM) aims to offer concise and contextualized perspectives on the latest research advancing biomedical science toward better diagnosis, treatment, and prevention of human diseases. It focuses on research at the intersection of basic biology and clinical research, covering new concepts in human biology and pathology with clear implications for diagnostics and therapy. TMM reviews bridge the gap between bench and bedside, discussing research from preclinical studies to patient-enrolled trials. The major themes include disease mechanisms, tools and technologies, diagnostics, and therapeutics, with a preference for articles relevant to multiple themes. TMM serves as a platform for discussion, pushing traditional boundaries and fostering collaboration between scientists and clinicians. The journal seeks to publish provocative and authoritative articles that are also accessible to a broad audience, inspiring new directions in molecular medicine to enhance human health.