首页 > 最新文献

Trends in molecular medicine最新文献

英文 中文
Gene therapy for β-thalassemia: current and future options.
IF 12.8 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-10 DOI: 10.1016/j.molmed.2024.12.001
Giulia Hardouin, Annarita Miccio, Megane Brusson

Beta-thalassemia is a severe, hereditary blood disorder characterized by anemia, transfusion dependence, reduced life expectancy, and poor quality of life. Allogeneic transplantation of hematopoietic stem cells (HSCs) is the only curative treatment for transfusion-dependent β-thalassemia, but a lack of compatible donors prevents the use of this approach for most patients. Over the past 20 years, the rise of gene therapy and the development of lentiviral vectors and genome-editing tools has extended curative options to a broader range of patients. Here, we review breakthroughs in gene addition- and genome-editing-based therapies for β-thalassemia, the clinical outcomes enabling approval by regulatory agencies, and perspectives for further development.

{"title":"Gene therapy for β-thalassemia: current and future options.","authors":"Giulia Hardouin, Annarita Miccio, Megane Brusson","doi":"10.1016/j.molmed.2024.12.001","DOIUrl":"https://doi.org/10.1016/j.molmed.2024.12.001","url":null,"abstract":"<p><p>Beta-thalassemia is a severe, hereditary blood disorder characterized by anemia, transfusion dependence, reduced life expectancy, and poor quality of life. Allogeneic transplantation of hematopoietic stem cells (HSCs) is the only curative treatment for transfusion-dependent β-thalassemia, but a lack of compatible donors prevents the use of this approach for most patients. Over the past 20 years, the rise of gene therapy and the development of lentiviral vectors and genome-editing tools has extended curative options to a broader range of patients. Here, we review breakthroughs in gene addition- and genome-editing-based therapies for β-thalassemia, the clinical outcomes enabling approval by regulatory agencies, and perspectives for further development.</p>","PeriodicalId":23263,"journal":{"name":"Trends in molecular medicine","volume":" ","pages":""},"PeriodicalIF":12.8,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142967054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pushing the boundaries: future directions in the management of spinal muscular atrophy.
IF 12.8 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-09 DOI: 10.1016/j.molmed.2024.12.006
Fiona Moultrie, Laura Chiverton, Isabel Hatami, Charlotte Lilien, Laurent Servais

Spinal muscular atrophy (SMA) is a devastating, degenerative, paediatric neuromuscular disease which until recently was untreatable. Discovery of the responsible gene 30 years ago heralded a new age of pioneering therapeutic developments. Three disease-modifying therapies (DMTs) have received regulatory approval and have transformed the disease, reducing disability and prolonging patient survival. These therapies - with distinct mechanisms, routes of administration, dosing schedules, side effect profiles, and financial costs - have dramatically altered the clinical phenotypes of this condition and have presented fresh challenges for patient care. In this review article we discuss potential strategies to maximise clinical outcomes through early diagnosis and treatment, optimised dosing, use of therapeutic combinations and state-of-the-art physiotherapy techniques, and the development of innovative therapies targeting alternative mechanisms.

{"title":"Pushing the boundaries: future directions in the management of spinal muscular atrophy.","authors":"Fiona Moultrie, Laura Chiverton, Isabel Hatami, Charlotte Lilien, Laurent Servais","doi":"10.1016/j.molmed.2024.12.006","DOIUrl":"https://doi.org/10.1016/j.molmed.2024.12.006","url":null,"abstract":"<p><p>Spinal muscular atrophy (SMA) is a devastating, degenerative, paediatric neuromuscular disease which until recently was untreatable. Discovery of the responsible gene 30 years ago heralded a new age of pioneering therapeutic developments. Three disease-modifying therapies (DMTs) have received regulatory approval and have transformed the disease, reducing disability and prolonging patient survival. These therapies - with distinct mechanisms, routes of administration, dosing schedules, side effect profiles, and financial costs - have dramatically altered the clinical phenotypes of this condition and have presented fresh challenges for patient care. In this review article we discuss potential strategies to maximise clinical outcomes through early diagnosis and treatment, optimised dosing, use of therapeutic combinations and state-of-the-art physiotherapy techniques, and the development of innovative therapies targeting alternative mechanisms.</p>","PeriodicalId":23263,"journal":{"name":"Trends in molecular medicine","volume":" ","pages":""},"PeriodicalIF":12.8,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142967055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gut microbiota and bilirubin metabolism: unveiling new pathways in health and disease.
IF 12.8 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-04 DOI: 10.1016/j.molmed.2024.12.007
Libor Vítek, Claudio Tiribelli

Bilirubin reductase (BilR), a gut microbiota-derived enzyme that reduces bilirubin to urobilinogen, was recently identified. Given the role of bilirubin in preventing modern diseases, understanding the link between the gut microbiota and health via modulation of bilirubin metabolism marks a major advance in medical research and potential treatments.

{"title":"Gut microbiota and bilirubin metabolism: unveiling new pathways in health and disease.","authors":"Libor Vítek, Claudio Tiribelli","doi":"10.1016/j.molmed.2024.12.007","DOIUrl":"https://doi.org/10.1016/j.molmed.2024.12.007","url":null,"abstract":"<p><p>Bilirubin reductase (BilR), a gut microbiota-derived enzyme that reduces bilirubin to urobilinogen, was recently identified. Given the role of bilirubin in preventing modern diseases, understanding the link between the gut microbiota and health via modulation of bilirubin metabolism marks a major advance in medical research and potential treatments.</p>","PeriodicalId":23263,"journal":{"name":"Trends in molecular medicine","volume":" ","pages":""},"PeriodicalIF":12.8,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142932667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NAD+ metabolism in acute kidney injury and chronic kidney disease transition.
IF 12.8 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-04 DOI: 10.1016/j.molmed.2024.12.004
Rahil Alhumaidi, Huihui Huang, Marie Christelle Saade, Amanda J Clark, Samir M Parikh

Disturbances in kidney tubular cell metabolism are increasingly recognized as a feature of acute kidney injury (AKI). In AKI, tubular epithelial cells undergo abnormal metabolic shifts that notably disrupt NAD+ metabolism. Recent advancements have highlighted the critical role of NAD+ metabolism in AKI, revealing that acute disruptions may lead to lasting cellular changes, thereby promoting the transition to chronic kidney disease (CKD). This review explores the molecular mechanisms underlying metabolic dysfunction in AKI, with a focus on NAD+ metabolism, and proposes several cellular processes through which acute aberrations in NAD+ may contribute to long-term changes in the kidney.

{"title":"NAD<sup>+</sup> metabolism in acute kidney injury and chronic kidney disease transition.","authors":"Rahil Alhumaidi, Huihui Huang, Marie Christelle Saade, Amanda J Clark, Samir M Parikh","doi":"10.1016/j.molmed.2024.12.004","DOIUrl":"https://doi.org/10.1016/j.molmed.2024.12.004","url":null,"abstract":"<p><p>Disturbances in kidney tubular cell metabolism are increasingly recognized as a feature of acute kidney injury (AKI). In AKI, tubular epithelial cells undergo abnormal metabolic shifts that notably disrupt NAD<sup>+</sup> metabolism. Recent advancements have highlighted the critical role of NAD<sup>+</sup> metabolism in AKI, revealing that acute disruptions may lead to lasting cellular changes, thereby promoting the transition to chronic kidney disease (CKD). This review explores the molecular mechanisms underlying metabolic dysfunction in AKI, with a focus on NAD<sup>+</sup> metabolism, and proposes several cellular processes through which acute aberrations in NAD<sup>+</sup> may contribute to long-term changes in the kidney.</p>","PeriodicalId":23263,"journal":{"name":"Trends in molecular medicine","volume":" ","pages":""},"PeriodicalIF":12.8,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142932714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pi-ecing together brain calcification mechanisms for therapeutic advancement.
IF 12.8 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-04 DOI: 10.1016/j.molmed.2024.12.003
Åse K Bekkelund, Anette Siggervåg, Henriette Aksnes

Seven primary familial brain calcification genes have been identified but their role in disease mechanisms has been less explored. Cheng et al. recently demonstrated that astrocyte-mediated regulation of brain phosphate (Pi) involves direct and functional interactions among three of these proteins, paving the way for new strategies to combat brain calcification.

{"title":"P<sub>i</sub>-ecing together brain calcification mechanisms for therapeutic advancement.","authors":"Åse K Bekkelund, Anette Siggervåg, Henriette Aksnes","doi":"10.1016/j.molmed.2024.12.003","DOIUrl":"https://doi.org/10.1016/j.molmed.2024.12.003","url":null,"abstract":"<p><p>Seven primary familial brain calcification genes have been identified but their role in disease mechanisms has been less explored. Cheng et al. recently demonstrated that astrocyte-mediated regulation of brain phosphate (P<sub>i</sub>) involves direct and functional interactions among three of these proteins, paving the way for new strategies to combat brain calcification.</p>","PeriodicalId":23263,"journal":{"name":"Trends in molecular medicine","volume":" ","pages":""},"PeriodicalIF":12.8,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142928462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanocarrier vaccines for respiratory infections.
IF 12.8 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-02 DOI: 10.1016/j.molmed.2024.12.002
Yinghan Jiang, Luping Lei, Mengyuan Zhao, Yuxin Tian, Yuanyu Huang, Minghui Yang

Respiratory infections continue to pose a major global health challenge, leading to high morbidity and mortality. Effective vaccines are crucial for prevention of these, and nanotechnology offers a promising approach to enhance vaccine efficacy through nanocarrier systems. This review explores recent advances in nanocarrier-based vaccines for respiratory pathogens, focusing on their ability to promote mucosal immunity against viral infections. It examines various types of nanocarriers, their physicochemical properties, and their role in improving vaccine delivery and immune responses. Additionally, the review examines key findings from both preclinical and clinical studies, highlighting the progress and challenges in developing nanocarrier vaccines for respiratory infections. These insights underscore the potential of nanotechnology to transform vaccine strategies and address unmet needs in respiratory disease prevention.

{"title":"Nanocarrier vaccines for respiratory infections.","authors":"Yinghan Jiang, Luping Lei, Mengyuan Zhao, Yuxin Tian, Yuanyu Huang, Minghui Yang","doi":"10.1016/j.molmed.2024.12.002","DOIUrl":"https://doi.org/10.1016/j.molmed.2024.12.002","url":null,"abstract":"<p><p>Respiratory infections continue to pose a major global health challenge, leading to high morbidity and mortality. Effective vaccines are crucial for prevention of these, and nanotechnology offers a promising approach to enhance vaccine efficacy through nanocarrier systems. This review explores recent advances in nanocarrier-based vaccines for respiratory pathogens, focusing on their ability to promote mucosal immunity against viral infections. It examines various types of nanocarriers, their physicochemical properties, and their role in improving vaccine delivery and immune responses. Additionally, the review examines key findings from both preclinical and clinical studies, highlighting the progress and challenges in developing nanocarrier vaccines for respiratory infections. These insights underscore the potential of nanotechnology to transform vaccine strategies and address unmet needs in respiratory disease prevention.</p>","PeriodicalId":23263,"journal":{"name":"Trends in molecular medicine","volume":" ","pages":""},"PeriodicalIF":12.8,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142928461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Resident physician depression: systemic challenges and possible solutions. 住院医生抑郁症:系统性挑战和可能的解决方案。
IF 12.8 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-01 Epub Date: 2024-08-23 DOI: 10.1016/j.molmed.2024.08.001
Karina Pereira-Lima, Srijan Sen

Resident physicians face intense stressors that significantly heighten their depression risk. This article discusses research findings on critical factors contributing to depression among resident physicians. Understanding these factors is essential to developing targeted interventions, fostering healthy work environments, and ultimately improving physician wellbeing and patient care.

住院医师面临着巨大的压力,这大大增加了他们患抑郁症的风险。本文讨论了导致住院医师抑郁的关键因素的研究结果。了解这些因素对于制定有针对性的干预措施、营造健康的工作环境以及最终改善医生的健康状况和患者护理至关重要。
{"title":"Resident physician depression: systemic challenges and possible solutions.","authors":"Karina Pereira-Lima, Srijan Sen","doi":"10.1016/j.molmed.2024.08.001","DOIUrl":"10.1016/j.molmed.2024.08.001","url":null,"abstract":"<p><p>Resident physicians face intense stressors that significantly heighten their depression risk. This article discusses research findings on critical factors contributing to depression among resident physicians. Understanding these factors is essential to developing targeted interventions, fostering healthy work environments, and ultimately improving physician wellbeing and patient care.</p>","PeriodicalId":23263,"journal":{"name":"Trends in molecular medicine","volume":" ","pages":"1-3"},"PeriodicalIF":12.8,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11717637/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142056602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of NEK2 in tumorigenesis and tumor progression. NEK2 在肿瘤发生和发展中的作用
IF 12.8 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-01 Epub Date: 2024-08-24 DOI: 10.1016/j.molmed.2024.07.013
Jiliang Xia, Hongyan Zhao, Jacob L Edmondson, Brian Koss, Fenghuang Zhan

Never in mitosis A (NIMA)-related kinase 2 (NEK2) is a serine/threonine kinase found in the nucleus and cytoplasm throughout the cell cycle. NEK2 is overexpressed in many cancers and is a biomarker of poor prognosis. Factors contributing to NEK2 elevation in cancer cells include oncogenic transcription factors, decreased ubiquitination, DNA methylation, and the circular RNA (circRNA)/long noncoding RNA (lncRNA)-miRNA axis. NEK2 overexpression produces chromosomal instability and aneuploidy, thereby enhancing cancer progression and suppressing antitumor immunity, which highlights the prominence of NEK2 in tumorigenesis and tumor progression. Small-molecule inhibitors targeting NEK2 have demonstrated promising therapeutic potential in vitro and in vivo across various cancer types. This review outlines the regulatory mechanisms of NEK2 expression, emphasizes its functional roles in cancer initiation and progression, and highlights the anticancer properties of NEK2 inhibitors.

有丝分裂永不分裂 A(NIMA)相关激酶 2(NEK2)是一种丝氨酸/苏氨酸激酶,在整个细胞周期中存在于细胞核和细胞质中。NEK2在许多癌症中过表达,是预后不良的生物标志物。导致 NEK2 在癌细胞中升高的因素包括致癌转录因子、泛素化减少、DNA 甲基化以及环状 RNA(circRNA)/长非编码 RNA(lncRNA)-miRNA 轴。NEK2 过表达会导致染色体不稳定和非整倍体,从而加剧癌症进展并抑制抗肿瘤免疫,这凸显了 NEK2 在肿瘤发生和进展中的重要作用。针对 NEK2 的小分子抑制剂在体外和体内对各种癌症类型都显示出了良好的治疗潜力。本综述概述了 NEK2 的表达调控机制,强调了 NEK2 在癌症发生和发展过程中的功能作用,并重点介绍了 NEK2 抑制剂的抗癌特性。
{"title":"Role of NEK2 in tumorigenesis and tumor progression.","authors":"Jiliang Xia, Hongyan Zhao, Jacob L Edmondson, Brian Koss, Fenghuang Zhan","doi":"10.1016/j.molmed.2024.07.013","DOIUrl":"10.1016/j.molmed.2024.07.013","url":null,"abstract":"<p><p>Never in mitosis A (NIMA)-related kinase 2 (NEK2) is a serine/threonine kinase found in the nucleus and cytoplasm throughout the cell cycle. NEK2 is overexpressed in many cancers and is a biomarker of poor prognosis. Factors contributing to NEK2 elevation in cancer cells include oncogenic transcription factors, decreased ubiquitination, DNA methylation, and the circular RNA (circRNA)/long noncoding RNA (lncRNA)-miRNA axis. NEK2 overexpression produces chromosomal instability and aneuploidy, thereby enhancing cancer progression and suppressing antitumor immunity, which highlights the prominence of NEK2 in tumorigenesis and tumor progression. Small-molecule inhibitors targeting NEK2 have demonstrated promising therapeutic potential in vitro and in vivo across various cancer types. This review outlines the regulatory mechanisms of NEK2 expression, emphasizes its functional roles in cancer initiation and progression, and highlights the anticancer properties of NEK2 inhibitors.</p>","PeriodicalId":23263,"journal":{"name":"Trends in molecular medicine","volume":" ","pages":"79-93"},"PeriodicalIF":12.8,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11717647/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142056603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Leveraging insights from cancer to improve tuberculosis therapy. 从癌症中汲取灵感,改进结核病治疗。
IF 12.8 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-01 Epub Date: 2024-08-13 DOI: 10.1016/j.molmed.2024.07.011
Meenal Datta, Laura E Via, Véronique Dartois, Lei Xu, Clifton E Barry, Rakesh K Jain

Exploring and exploiting the microenvironmental similarities between pulmonary tuberculosis (TB) granulomas and malignant tumors has revealed new strategies for more efficacious host-directed therapies (HDTs). This opinion article discusses a paradigm shift in TB therapeutic development, drawing on critical insights from oncology. We summarize recent efforts to characterize and overcome key shared features between tumors and granulomas, including excessive fibrosis, abnormal angiogenesis, hypoxia and necrosis, and immunosuppression. We provide specific examples of cancer therapy application to TB to overcome these microenvironmental abnormalities, including matrix-targeting therapies, antiangiogenic agents, and immune-stimulatory drugs. Finally, we propose a new framework for combining HDTs with anti-TB agents to maximize therapeutic delivery and efficacy while reducing treatment dosages, duration, and harmful side effects to benefit TB patients.

探索和利用肺结核(TB)肉芽肿与恶性肿瘤之间的微环境相似性揭示了更有效的宿主导向疗法(HDT)的新策略。这篇观点文章借鉴肿瘤学的重要见解,讨论了结核病疗法开发的范式转变。我们总结了最近为描述和克服肿瘤与肉芽肿之间的主要共同特征所做的努力,包括过度纤维化、异常血管生成、缺氧和坏死以及免疫抑制。我们提供了将癌症疗法应用于结核病以克服这些微环境异常的具体实例,包括基质靶向疗法、抗血管生成药物和免疫刺激药物。最后,我们提出了将 HDT 与抗结核药物相结合的新框架,以最大限度地提高疗效,同时减少治疗剂量、缩短治疗时间并降低有害副作用,从而造福结核病患者。
{"title":"Leveraging insights from cancer to improve tuberculosis therapy.","authors":"Meenal Datta, Laura E Via, Véronique Dartois, Lei Xu, Clifton E Barry, Rakesh K Jain","doi":"10.1016/j.molmed.2024.07.011","DOIUrl":"10.1016/j.molmed.2024.07.011","url":null,"abstract":"<p><p>Exploring and exploiting the microenvironmental similarities between pulmonary tuberculosis (TB) granulomas and malignant tumors has revealed new strategies for more efficacious host-directed therapies (HDTs). This opinion article discusses a paradigm shift in TB therapeutic development, drawing on critical insights from oncology. We summarize recent efforts to characterize and overcome key shared features between tumors and granulomas, including excessive fibrosis, abnormal angiogenesis, hypoxia and necrosis, and immunosuppression. We provide specific examples of cancer therapy application to TB to overcome these microenvironmental abnormalities, including matrix-targeting therapies, antiangiogenic agents, and immune-stimulatory drugs. Finally, we propose a new framework for combining HDTs with anti-TB agents to maximize therapeutic delivery and efficacy while reducing treatment dosages, duration, and harmful side effects to benefit TB patients.</p>","PeriodicalId":23263,"journal":{"name":"Trends in molecular medicine","volume":" ","pages":"11-20"},"PeriodicalIF":12.8,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11717643/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141983370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbes and mood: innovative biomarker approaches in depression. 微生物与情绪:抑郁症的创新生物标记方法。
IF 12.8 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-01 Epub Date: 2024-09-30 DOI: 10.1016/j.molmed.2024.09.002
Miranda Green, Madhukar H Trivedi, Jane A Foster

Although the field of psychiatry has made gains in biomarker discovery, our ability to change long-term outcomes remains inadequate. Matching individuals to the best treatment for them is a persistent clinical challenge. Moreover, the development of novel treatments has been hampered in part due to a limited understanding of the biological mechanisms underlying individual differences that contribute to clinical heterogeneity. The gut microbiome has become an area of intensive research in conditions ranging from metabolic disorders to cancer. Innovation in these spaces has led to translational breakthroughs, offering novel microbiome-informed approaches that may improve patient outcomes. In this review we examine how translational microbiome research is poised to advance biomarker discovery in mental health, with a focus on depression.

尽管精神病学领域在生物标志物的发现方面取得了进展,但我们改变长期结果的能力仍然不足。为患者匹配最适合他们的治疗方法是一项长期的临床挑战。此外,由于对导致临床异质性的个体差异的生物机制了解有限,新型治疗方法的开发一直受到阻碍。从代谢紊乱到癌症,肠道微生物组已成为一个深入研究的领域。这些领域的创新带来了转化方面的突破,提供了可改善患者预后的新型微生物组学方法。在本综述中,我们将以抑郁症为重点,探讨微生物组转化研究如何推动心理健康领域的生物标志物发现。
{"title":"Microbes and mood: innovative biomarker approaches in depression.","authors":"Miranda Green, Madhukar H Trivedi, Jane A Foster","doi":"10.1016/j.molmed.2024.09.002","DOIUrl":"10.1016/j.molmed.2024.09.002","url":null,"abstract":"<p><p>Although the field of psychiatry has made gains in biomarker discovery, our ability to change long-term outcomes remains inadequate. Matching individuals to the best treatment for them is a persistent clinical challenge. Moreover, the development of novel treatments has been hampered in part due to a limited understanding of the biological mechanisms underlying individual differences that contribute to clinical heterogeneity. The gut microbiome has become an area of intensive research in conditions ranging from metabolic disorders to cancer. Innovation in these spaces has led to translational breakthroughs, offering novel microbiome-informed approaches that may improve patient outcomes. In this review we examine how translational microbiome research is poised to advance biomarker discovery in mental health, with a focus on depression.</p>","PeriodicalId":23263,"journal":{"name":"Trends in molecular medicine","volume":" ","pages":"50-63"},"PeriodicalIF":12.8,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142366581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Trends in molecular medicine
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1