Generative AI in a new era of computer model-informed tobacco research: a short report.

IF 4 2区 医学 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH Tobacco Control Pub Date : 2025-02-06 DOI:10.1136/tc-2024-058887
Julia Vassey, Chris J Kennedy, Ho-Chun Herbert Chang, Jennifer B Unger
{"title":"Generative AI in a new era of computer model-informed tobacco research: a short report.","authors":"Julia Vassey, Chris J Kennedy, Ho-Chun Herbert Chang, Jennifer B Unger","doi":"10.1136/tc-2024-058887","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Social media influencers who promote e-cigarettes on Instagram or TikTok for tobacco brands use marketing tactics to increase the appeal of their promotional content, for example, depicting e-cigarettes alongside healthy lifestyle or entertainment imagery that could decrease youths' risk perceptions of e-cigarettes. Monitoring the prevalence of such content on social media using computer vision and generative AI (artificial intelligence) can provide valuable data for tobacco regulatory science (TRS).</p><p><strong>Methods: </strong>We selected 102 Instagram and TikTok videos posted by micro-influencers in 2021-2024 who promoted e-cigarettes alongside posts featuring four themes: cannabis, entertainment, fashion or healthy lifestyle. We used OpenAI's GPT-4o multimodal large-scale visual linguistic model to detect the presence of nicotine vaping, cannabis vaping, fashion, entertainment and healthy lifestyle. The model did not require any additional training and improved its performance as we modified the text prompt.</p><p><strong>Results: </strong>The model's accuracy was 87% for nicotine vaping, 96% for cannabis vaping, 99% for fashion, 96% for entertainment and 98% for healthy lifestyle.</p><p><strong>Conclusions: </strong>Generative AI can achieve accurate object detection with zero-shot learning (no additional training of the pretrained model). This model can be applied to big data-scale sample sizes of images and videos to detect e-cigarette-related and other substance-related promotional content and contexts (eg, healthy lifestyle) used for the promotion of these products on social media, providing valuable data for TRS.</p>","PeriodicalId":23145,"journal":{"name":"Tobacco Control","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tobacco Control","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/tc-2024-058887","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Social media influencers who promote e-cigarettes on Instagram or TikTok for tobacco brands use marketing tactics to increase the appeal of their promotional content, for example, depicting e-cigarettes alongside healthy lifestyle or entertainment imagery that could decrease youths' risk perceptions of e-cigarettes. Monitoring the prevalence of such content on social media using computer vision and generative AI (artificial intelligence) can provide valuable data for tobacco regulatory science (TRS).

Methods: We selected 102 Instagram and TikTok videos posted by micro-influencers in 2021-2024 who promoted e-cigarettes alongside posts featuring four themes: cannabis, entertainment, fashion or healthy lifestyle. We used OpenAI's GPT-4o multimodal large-scale visual linguistic model to detect the presence of nicotine vaping, cannabis vaping, fashion, entertainment and healthy lifestyle. The model did not require any additional training and improved its performance as we modified the text prompt.

Results: The model's accuracy was 87% for nicotine vaping, 96% for cannabis vaping, 99% for fashion, 96% for entertainment and 98% for healthy lifestyle.

Conclusions: Generative AI can achieve accurate object detection with zero-shot learning (no additional training of the pretrained model). This model can be applied to big data-scale sample sizes of images and videos to detect e-cigarette-related and other substance-related promotional content and contexts (eg, healthy lifestyle) used for the promotion of these products on social media, providing valuable data for TRS.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
背景:在Instagram或TikTok上为烟草品牌推广电子烟的社交媒体影响者会使用营销策略来增加其宣传内容的吸引力,例如,将电子烟与健康生活方式或娱乐图像放在一起进行描述,从而降低青少年对电子烟的风险认知。利用计算机视觉和生成式人工智能(人工智能)监测此类内容在社交媒体上的流行程度可为烟草监管科学(TRS)提供宝贵的数据:我们选择了 102 个 Instagram 和 TikTok 视频,这些视频由 2021 年至 2024 年期间的微影响力发布,他们在发布以大麻、娱乐、时尚或健康生活方式为主题的帖子的同时推广电子烟。我们使用 OpenAI 的 GPT-4o 多模态大规模视觉语言模型来检测是否存在尼古丁吸食、大麻吸食、时尚、娱乐和健康生活方式。该模型不需要任何额外的训练,并随着我们对文本提示的修改而提高了性能:该模型对尼古丁吸食、大麻吸食、时尚、娱乐和健康生活方式的准确率分别为 87%、96%、99%、96% 和 98%:生成式人工智能可以通过零镜头学习(无需额外训练预训练模型)实现精确的对象检测。该模型可应用于大数据规模的图像和视频样本,以检测社交媒体上与电子烟和其他物质相关的促销内容和用于促销这些产品的语境(如健康生活方式),从而为 TRS 提供有价值的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Tobacco Control
Tobacco Control 医学-公共卫生、环境卫生与职业卫生
CiteScore
9.10
自引率
26.90%
发文量
223
审稿时长
6-12 weeks
期刊介绍: Tobacco Control is an international peer-reviewed journal covering the nature and consequences of tobacco use worldwide; tobacco''s effects on population health, the economy, the environment, and society; efforts to prevent and control the global tobacco epidemic through population-level education and policy changes; the ethical dimensions of tobacco control policies; and the activities of the tobacco industry and its allies.
期刊最新文献
Australian adolescents' knowledge of smoking harms and misperceptions about tobacco products: a cross-sectional study. Effects of retail environment regulations on reducing tobacco retailers and operating hours: a case study in Egypt. Online retailer noncompliance to e-cigarette excise tax and tobacco licensing laws. Vaping cessation interventions: a systematic review and meta-analysis. Swisher Blunts: the consequences of assembly no longer being required.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1