The Representation of Stimulus Features during Stable Fixation and Active Vision.

IF 4.4 2区 医学 Q1 NEUROSCIENCES Journal of Neuroscience Pub Date : 2025-03-19 DOI:10.1523/JNEUROSCI.1652-24.2024
Caoimhe Moran, Philippa A Johnson, Hinze Hogendoorn, Ayelet N Landau
{"title":"The Representation of Stimulus Features during Stable Fixation and Active Vision.","authors":"Caoimhe Moran, Philippa A Johnson, Hinze Hogendoorn, Ayelet N Landau","doi":"10.1523/JNEUROSCI.1652-24.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Predictive updating of an object's spatial coordinates from presaccade to postsaccade contributes to stable visual perception. Whether object features are predictively remapped remains contested. We set out to characterize the spatiotemporal dynamics of feature processing during stable fixation and active vision. To do so, we applied multivariate decoding methods to EEG data collected while human participants (male and female) viewed brief visual stimuli. Stimuli appeared at different locations across the visual field at either high or low spatial frequency (SF). During fixation, classifiers were trained to decode SF presented at one parafoveal location and cross-tested on SF from either the same, adjacent, or more peripheral locations. When training and testing on the same location, SF was classified shortly after stimulus onset (∼79 ms). Decoding of SF at locations farther from the trained location emerged later (∼144-295 ms), with decoding latency modulated by eccentricity. This analysis provides a detailed time course for the spread of feature information across the visual field. Next, we investigated how active vision impacts the emergence of SF information. In the presence of a saccade, the decoding time of peripheral SF at parafoveal locations was earlier, indicating predictive anticipation of SF due to the saccade. Crucially, however, this predictive effect was not limited to the specific remapped location. Rather, peripheral SF was correctly classified, at an accelerated time course, at all parafoveal positions. This indicates spatially coarse, predictive anticipation of stimulus features during active vision, likely enabling a smooth transition on saccade landing.</p>","PeriodicalId":50114,"journal":{"name":"Journal of Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11924989/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/JNEUROSCI.1652-24.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Predictive updating of an object's spatial coordinates from presaccade to postsaccade contributes to stable visual perception. Whether object features are predictively remapped remains contested. We set out to characterize the spatiotemporal dynamics of feature processing during stable fixation and active vision. To do so, we applied multivariate decoding methods to EEG data collected while human participants (male and female) viewed brief visual stimuli. Stimuli appeared at different locations across the visual field at either high or low spatial frequency (SF). During fixation, classifiers were trained to decode SF presented at one parafoveal location and cross-tested on SF from either the same, adjacent, or more peripheral locations. When training and testing on the same location, SF was classified shortly after stimulus onset (∼79 ms). Decoding of SF at locations farther from the trained location emerged later (∼144-295 ms), with decoding latency modulated by eccentricity. This analysis provides a detailed time course for the spread of feature information across the visual field. Next, we investigated how active vision impacts the emergence of SF information. In the presence of a saccade, the decoding time of peripheral SF at parafoveal locations was earlier, indicating predictive anticipation of SF due to the saccade. Crucially, however, this predictive effect was not limited to the specific remapped location. Rather, peripheral SF was correctly classified, at an accelerated time course, at all parafoveal positions. This indicates spatially coarse, predictive anticipation of stimulus features during active vision, likely enabling a smooth transition on saccade landing.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Neuroscience
Journal of Neuroscience 医学-神经科学
CiteScore
9.30
自引率
3.80%
发文量
1164
审稿时长
12 months
期刊介绍: JNeurosci (ISSN 0270-6474) is an official journal of the Society for Neuroscience. It is published weekly by the Society, fifty weeks a year, one volume a year. JNeurosci publishes papers on a broad range of topics of general interest to those working on the nervous system. Authors now have an Open Choice option for their published articles
期刊最新文献
Transient Upregulation of Procaspase-3 during Oligodendrocyte Fate Decisions. Involvement of aSPOC in the Online Updating of Reach-to-Grasp to Mechanical Perturbations of Hand Transport. Scaling of Ventral Hippocampal Activity during Anxiety. From Circuits to Lifespan: Translating Mouse and Human Timelines with Neuroimaging-Based Tractography. The Representation of Stimulus Features during Stable Fixation and Active Vision.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1