{"title":"Improved outcome prediction in acute pancreatitis with generated data and advanced machine learning algorithms.","authors":"Murat Özdede, Ali Batur, Alp Eren Aksoy","doi":"10.4103/tjem.tjem_161_24","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Traditional scoring systems have been widely used to predict acute pancreatitis (AP) severity but have limitations in predictive accuracy. This study investigates the use of machine learning (ML) algorithms to improve predictive accuracy in AP.</p><p><strong>Methods: </strong>A retrospective study was conducted using data from 101 AP patients in a tertiary hospital in Türkiye. Data were preprocessed, and synthetic data were generated with Gaussian noise addition and balanced with the ADASYN algorithm, resulting in 250 cases. Supervised ML models, including random forest (RF) and XGBoost (XGB), were trained, tested, and validated against traditional clinical scores (Ranson's, modified Glasgow, and BISAP) using area under the curve (AUC), F1 score, and recall.</p><p><strong>Results: </strong>RF outperformed XGB with an AUC of 0.89, F1 score of 0.82, and recall of 0.82. BISAP showed balanced performance (AUC = 0.70, F1 = 0.44, and recall = 0.85), whereas the Glasgow criteria had the highest recall but lower precision (AUC = 0.70, F1 = 0.38, and recall = 0.95). Ranson's admission criteria were the least effective (AUC = 0.53, F1 = 0.42, and recall = 0.39), probable because it lacked the 48<sup>th</sup> h features.</p><p><strong>Conclusion: </strong>ML models, especially RF, significantly outperform traditional clinical scores in predicting adverse outcomes in AP, suggesting that integrating ML into clinical practice could improve prognostic assessments.</p>","PeriodicalId":46536,"journal":{"name":"Turkish Journal of Emergency Medicine","volume":"25 1","pages":"32-40"},"PeriodicalIF":1.1000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11774427/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Emergency Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/tjem.tjem_161_24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"EMERGENCY MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: Traditional scoring systems have been widely used to predict acute pancreatitis (AP) severity but have limitations in predictive accuracy. This study investigates the use of machine learning (ML) algorithms to improve predictive accuracy in AP.
Methods: A retrospective study was conducted using data from 101 AP patients in a tertiary hospital in Türkiye. Data were preprocessed, and synthetic data were generated with Gaussian noise addition and balanced with the ADASYN algorithm, resulting in 250 cases. Supervised ML models, including random forest (RF) and XGBoost (XGB), were trained, tested, and validated against traditional clinical scores (Ranson's, modified Glasgow, and BISAP) using area under the curve (AUC), F1 score, and recall.
Results: RF outperformed XGB with an AUC of 0.89, F1 score of 0.82, and recall of 0.82. BISAP showed balanced performance (AUC = 0.70, F1 = 0.44, and recall = 0.85), whereas the Glasgow criteria had the highest recall but lower precision (AUC = 0.70, F1 = 0.38, and recall = 0.95). Ranson's admission criteria were the least effective (AUC = 0.53, F1 = 0.42, and recall = 0.39), probable because it lacked the 48th h features.
Conclusion: ML models, especially RF, significantly outperform traditional clinical scores in predicting adverse outcomes in AP, suggesting that integrating ML into clinical practice could improve prognostic assessments.
期刊介绍:
The Turkish Journal of Emergency Medicine (Turk J Emerg Med) is an International, peer-reviewed, open-access journal that publishes clinical and experimental trials, case reports, invited reviews, case images, letters to the Editor, and interesting research conducted in all fields of Emergency Medicine. The Journal is the official scientific publication of the Emergency Medicine Association of Turkey (EMAT) and is printed four times a year, in January, April, July and October. The language of the journal is English. The Journal is based on independent and unbiased double-blinded peer-reviewed principles. Only unpublished papers that are not under review for publication elsewhere can be submitted. The authors are responsible for the scientific content of the material to be published. The Turkish Journal of Emergency Medicine reserves the right to request any research materials on which the paper is based. The Editorial Board of the Turkish Journal of Emergency Medicine and the Publisher adheres to the principles of the International Council of Medical Journal Editors, the World Association of Medical Editors, the Council of Science Editors, the Committee on Publication Ethics, the US National Library of Medicine, the US Office of Research Integrity, the European Association of Science Editors, and the International Society of Managing and Technical Editors.