{"title":"Smart home-assisted anomaly detection system for older adults: a deep learning approach with a comprehensive set of daily activities.","authors":"Ander Cejudo, Andoni Beristain, Aitor Almeida, Kristin Rebescher, Cristina Martín, Iván Macía","doi":"10.1007/s11517-025-03308-y","DOIUrl":null,"url":null,"abstract":"<p><p>Smart homes have the potential to enable remote monitoring of the health and well-being of older adults, leading to improved health outcomes and increased independence. However, current approaches only consider a limited set of daily activities and do not combine data from individuals. In this work, we propose the use of deep learning techniques to model behavior at the population level and detect significant deviations (i.e., anomalies) while taking into account the whole set of daily activities (41). We detect and visualize daily routine patterns, train a set of recurrent neural networks for behavior modelling with next-day prediction, and model errors with a normal distribution to identify significant deviations while considering the temporal component. Clustering of daily routines achieves a silhouette score of 0.18 and the best model obtains a mean squared error in next day routine prediction of 4.38%. The mean number of deviated activities for the anomalies in the train and test set are 3.6 and 3.0, respectively, with more than 60% of anomalies involving three or more deviated activities in the test set. The methodology is scalable and can incorporate additional activities into the analysis.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-025-03308-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Smart homes have the potential to enable remote monitoring of the health and well-being of older adults, leading to improved health outcomes and increased independence. However, current approaches only consider a limited set of daily activities and do not combine data from individuals. In this work, we propose the use of deep learning techniques to model behavior at the population level and detect significant deviations (i.e., anomalies) while taking into account the whole set of daily activities (41). We detect and visualize daily routine patterns, train a set of recurrent neural networks for behavior modelling with next-day prediction, and model errors with a normal distribution to identify significant deviations while considering the temporal component. Clustering of daily routines achieves a silhouette score of 0.18 and the best model obtains a mean squared error in next day routine prediction of 4.38%. The mean number of deviated activities for the anomalies in the train and test set are 3.6 and 3.0, respectively, with more than 60% of anomalies involving three or more deviated activities in the test set. The methodology is scalable and can incorporate additional activities into the analysis.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).