{"title":"Graph convolution network-based eeg signal analysis: a review.","authors":"Hui Xiong, Yan Yan, Yimei Chen, Jinzhen Liu","doi":"10.1007/s11517-025-03295-0","DOIUrl":null,"url":null,"abstract":"<p><p>With the advancement of artificial intelligence technology, more and more effective methods are being used to identify and classify Electroencephalography (EEG) signals to address challenges in healthcare and brain-computer interface fields. The applications and major achievements of Graph Convolution Network (GCN) techniques in EEG signal analysis are reviewed in this paper. Through an exhaustive search of the published literature, a module-by-module discussion is carried out for the first time to address the current research status of GCN. An exhaustive classification of methods and a systematic analysis of key modules, such as brain map construction, node feature extraction, and GCN architecture design, are presented. In addition, we pay special attention to several key research issues related to GCN. This review enhances the understanding of the future potential of GCN in the field of EEG signal analysis. At the same time, several valuable development directions are sorted out for researchers in related fields, such as analysing the applicability of different GCN layers, building task-oriented GCN models, and improving adaptation to limited data.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-025-03295-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
With the advancement of artificial intelligence technology, more and more effective methods are being used to identify and classify Electroencephalography (EEG) signals to address challenges in healthcare and brain-computer interface fields. The applications and major achievements of Graph Convolution Network (GCN) techniques in EEG signal analysis are reviewed in this paper. Through an exhaustive search of the published literature, a module-by-module discussion is carried out for the first time to address the current research status of GCN. An exhaustive classification of methods and a systematic analysis of key modules, such as brain map construction, node feature extraction, and GCN architecture design, are presented. In addition, we pay special attention to several key research issues related to GCN. This review enhances the understanding of the future potential of GCN in the field of EEG signal analysis. At the same time, several valuable development directions are sorted out for researchers in related fields, such as analysing the applicability of different GCN layers, building task-oriented GCN models, and improving adaptation to limited data.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).