{"title":"Fluorogenic Tetrazine Bioorthogonal Probes for Advanced Application in Bioimaging and Biomedicine.","authors":"Wuyu Mao, Ping Dong, Wei Du, Haoxing Wu","doi":"10.1021/cbmi.4c00095","DOIUrl":null,"url":null,"abstract":"<p><p>A variety of bioorthogonal chemical tools have been developed and widely used in the study of biological phenomena in situ. Tetrazine bioorthogonal chemistry exhibits ultrafast reaction kinetics, excellent biocompatibility, and precise optical regulatory capabilities. Fluorogenic tetrazine bioorthogonal probes have achieved particularly diverse applications in bioimaging and disease diagnosis and treatment. This Viewpoint briefly introduces the characteristics and advantages of tetrazine bioorthogonal chemistry, some design strategies of fluorogenic tetrazine probes, and the status of applications of these tools to in vivo imaging, as well as disease diagnosis and treatment. Finally, we discuss challenges and propose future trends in the field of fluorogenic tetrazine probes. This Viewpoint offers insights into the development of new bioorthogonal tools for chemical biology research and for the design of new drugs.</p>","PeriodicalId":53181,"journal":{"name":"Chemical & Biomedical Imaging","volume":"3 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11775852/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical & Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/cbmi.4c00095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/27 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A variety of bioorthogonal chemical tools have been developed and widely used in the study of biological phenomena in situ. Tetrazine bioorthogonal chemistry exhibits ultrafast reaction kinetics, excellent biocompatibility, and precise optical regulatory capabilities. Fluorogenic tetrazine bioorthogonal probes have achieved particularly diverse applications in bioimaging and disease diagnosis and treatment. This Viewpoint briefly introduces the characteristics and advantages of tetrazine bioorthogonal chemistry, some design strategies of fluorogenic tetrazine probes, and the status of applications of these tools to in vivo imaging, as well as disease diagnosis and treatment. Finally, we discuss challenges and propose future trends in the field of fluorogenic tetrazine probes. This Viewpoint offers insights into the development of new bioorthogonal tools for chemical biology research and for the design of new drugs.
期刊介绍:
Chemical & Biomedical Imaging is a peer-reviewed open access journal devoted to the publication of cutting-edge research papers on all aspects of chemical and biomedical imaging. This interdisciplinary field sits at the intersection of chemistry physics biology materials engineering and medicine. The journal aims to bring together researchers from across these disciplines to address cutting-edge challenges of fundamental research and applications.Topics of particular interest include but are not limited to:Imaging of processes and reactionsImaging of nanoscale microscale and mesoscale materialsImaging of biological interactions and interfacesSingle-molecule and cellular imagingWhole-organ and whole-body imagingMolecular imaging probes and contrast agentsBioluminescence chemiluminescence and electrochemiluminescence imagingNanophotonics and imagingChemical tools for new imaging modalitiesChemical and imaging techniques in diagnosis and therapyImaging-guided drug deliveryAI and machine learning assisted imaging