Evolution of Artificial Intelligence in Medical Education From 2000 to 2024: Bibliometric Analysis.

IF 1.9 Q3 MEDICINE, RESEARCH & EXPERIMENTAL Interactive Journal of Medical Research Pub Date : 2025-01-30 DOI:10.2196/63775
Rui Li, Tong Wu
{"title":"Evolution of Artificial Intelligence in Medical Education From 2000 to 2024: Bibliometric Analysis.","authors":"Rui Li, Tong Wu","doi":"10.2196/63775","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Incorporating artificial intelligence (AI) into medical education has gained significant attention for its potential to enhance teaching and learning outcomes. However, it lacks a comprehensive study depicting the academic performance and status of AI in the medical education domain.</p><p><strong>Objective: </strong>This study aims to analyze the social patterns, productive contributors, knowledge structure, and clusters since the 21st century.</p><p><strong>Methods: </strong>Documents were retrieved from the Web of Science Core Collection database from 2000 to 2024. VOSviewer, Incites, and Citespace were used to analyze the bibliometric metrics, which were categorized by country, institution, authors, journals, and keywords. The variables analyzed encompassed counts, citations, H-index, impact factor, and collaboration metrics.</p><p><strong>Results: </strong>Altogether, 7534 publications were initially retrieved and 2775 were included for analysis. The annual count and citation of papers exhibited exponential trends since 2018. The United States emerged as the lead contributor due to its high productivity and recognition levels. Stanford University, Johns Hopkins University, National University of Singapore, Mayo Clinic, University of Arizona, and University of Toronto were representative institutions in their respective fields. Cureus, JMIR Medical Education, Medical Teacher, and BMC Medical Education ranked as the top four most productive journals. The resulting heat map highlighted several high-frequency keywords, including performance, education, AI, and model. The citation burst time of terms revealed that AI technologies shifted from imaging processing (2000), augmented reality (2013), and virtual reality (2016) to decision-making (2020) and model (2021). Keywords such as mortality and robotic surgery persisted into 2023, suggesting the ongoing recognition and interest in these areas.</p><p><strong>Conclusions: </strong>This study provides valuable insights and guidance for researchers who are interested in educational technology, as well as recommendations for pioneering institutions and journal submissions. Along with the rapid growth of AI, medical education is expected to gain much more benefits.</p>","PeriodicalId":51757,"journal":{"name":"Interactive Journal of Medical Research","volume":"14 ","pages":"e63775"},"PeriodicalIF":1.9000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interactive Journal of Medical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/63775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Incorporating artificial intelligence (AI) into medical education has gained significant attention for its potential to enhance teaching and learning outcomes. However, it lacks a comprehensive study depicting the academic performance and status of AI in the medical education domain.

Objective: This study aims to analyze the social patterns, productive contributors, knowledge structure, and clusters since the 21st century.

Methods: Documents were retrieved from the Web of Science Core Collection database from 2000 to 2024. VOSviewer, Incites, and Citespace were used to analyze the bibliometric metrics, which were categorized by country, institution, authors, journals, and keywords. The variables analyzed encompassed counts, citations, H-index, impact factor, and collaboration metrics.

Results: Altogether, 7534 publications were initially retrieved and 2775 were included for analysis. The annual count and citation of papers exhibited exponential trends since 2018. The United States emerged as the lead contributor due to its high productivity and recognition levels. Stanford University, Johns Hopkins University, National University of Singapore, Mayo Clinic, University of Arizona, and University of Toronto were representative institutions in their respective fields. Cureus, JMIR Medical Education, Medical Teacher, and BMC Medical Education ranked as the top four most productive journals. The resulting heat map highlighted several high-frequency keywords, including performance, education, AI, and model. The citation burst time of terms revealed that AI technologies shifted from imaging processing (2000), augmented reality (2013), and virtual reality (2016) to decision-making (2020) and model (2021). Keywords such as mortality and robotic surgery persisted into 2023, suggesting the ongoing recognition and interest in these areas.

Conclusions: This study provides valuable insights and guidance for researchers who are interested in educational technology, as well as recommendations for pioneering institutions and journal submissions. Along with the rapid growth of AI, medical education is expected to gain much more benefits.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Interactive Journal of Medical Research
Interactive Journal of Medical Research MEDICINE, RESEARCH & EXPERIMENTAL-
自引率
0.00%
发文量
45
审稿时长
12 weeks
期刊最新文献
Evolution of Artificial Intelligence in Medical Education From 2000 to 2024: Bibliometric Analysis. The Clinicians' Guide to Large Language Models: A General Perspective With a Focus on Hallucinations. The Evolution of Uroflowmetry and Bladder Diary and the Emerging Trend of Using Home Devices From Hospital to Home. Integration of Conventional and Virtual Reality Approaches in Augmented Reality for Theory-Based Psychoeducational Intervention Design for Chronic Low Back Pain: Scoping Review. The Effect of Combining mHealth and Health Professional-Led Intervention for Improving Health-Related Outcomes in Chronic Diseases: Systematic Review and Meta-Analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1