Optimal placement of ambulance stations using data-driven direct and surrogate search methods

IF 3.7 2区 医学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS International Journal of Medical Informatics Pub Date : 2025-01-24 DOI:10.1016/j.ijmedinf.2025.105790
Hassan Bozorgmanesh, Patrik Rydén
{"title":"Optimal placement of ambulance stations using data-driven direct and surrogate search methods","authors":"Hassan Bozorgmanesh,&nbsp;Patrik Rydén","doi":"10.1016/j.ijmedinf.2025.105790","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>In this paper, we implement and validate a set of optimization approaches that were applied on ambulance data from the Västerbotten county in Sweden collected 2018, with the objective to find the optimal placement of the ambulance stations (or stand-by positions) in Umeå, a municipality in the county with regards to median of response times for priority 1 alarms, the most urgent type of alarms (MRT1).</div></div><div><h3>Methods</h3><div>Here, we use data-driven approaches for optimizing the placement of ambulance stations. For a given allocation, i.e. placement of the stations, a large-scale simulation is conducted to estimate the allocation's MRT1. Since the inherent mechanism of the simulation function is very complex, the optimization problem has a black-box nature. We use two methods belonging to important classes for solving the problem of black-box optimization: GPS (smooth-free) and surrogate (smooth-based) methods. Both methods can be used on either local or global data and implemented using a one-by-one approach or an all-together approach. To study the mentioned methods and approaches, we consider several real-world scenarios pertaining to the placement of ambulance stations in Umeå municipality.</div></div><div><h3>Results</h3><div>Relocating the ambulance stations in Umeå can reduce MRT1 around 80-100 seconds in comparison with the current allocation. Using global data leads to better solutions with lower MRT1-values, although they demand more computational time. The results of GPS and surrogate methods are similar, but the surrogate method is less sensitive to the starting position. One-by-one approach is more effective and less time-consuming than the all-together approach.</div></div><div><h3>Conclusion</h3><div>The results confirm that relocating ambulance stations can lead to a significant decrease in MRT1 and it also can compensate for the loss of an ambulance resource partially. To reduce the dimensionality and the cost of optimization methods, it can be better to use one-by-one approach than all-together.</div></div>","PeriodicalId":54950,"journal":{"name":"International Journal of Medical Informatics","volume":"196 ","pages":"Article 105790"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Medical Informatics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386505625000073","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Objective

In this paper, we implement and validate a set of optimization approaches that were applied on ambulance data from the Västerbotten county in Sweden collected 2018, with the objective to find the optimal placement of the ambulance stations (or stand-by positions) in Umeå, a municipality in the county with regards to median of response times for priority 1 alarms, the most urgent type of alarms (MRT1).

Methods

Here, we use data-driven approaches for optimizing the placement of ambulance stations. For a given allocation, i.e. placement of the stations, a large-scale simulation is conducted to estimate the allocation's MRT1. Since the inherent mechanism of the simulation function is very complex, the optimization problem has a black-box nature. We use two methods belonging to important classes for solving the problem of black-box optimization: GPS (smooth-free) and surrogate (smooth-based) methods. Both methods can be used on either local or global data and implemented using a one-by-one approach or an all-together approach. To study the mentioned methods and approaches, we consider several real-world scenarios pertaining to the placement of ambulance stations in Umeå municipality.

Results

Relocating the ambulance stations in Umeå can reduce MRT1 around 80-100 seconds in comparison with the current allocation. Using global data leads to better solutions with lower MRT1-values, although they demand more computational time. The results of GPS and surrogate methods are similar, but the surrogate method is less sensitive to the starting position. One-by-one approach is more effective and less time-consuming than the all-together approach.

Conclusion

The results confirm that relocating ambulance stations can lead to a significant decrease in MRT1 and it also can compensate for the loss of an ambulance resource partially. To reduce the dimensionality and the cost of optimization methods, it can be better to use one-by-one approach than all-together.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Medical Informatics
International Journal of Medical Informatics 医学-计算机:信息系统
CiteScore
8.90
自引率
4.10%
发文量
217
审稿时长
42 days
期刊介绍: International Journal of Medical Informatics provides an international medium for dissemination of original results and interpretative reviews concerning the field of medical informatics. The Journal emphasizes the evaluation of systems in healthcare settings. The scope of journal covers: Information systems, including national or international registration systems, hospital information systems, departmental and/or physician''s office systems, document handling systems, electronic medical record systems, standardization, systems integration etc.; Computer-aided medical decision support systems using heuristic, algorithmic and/or statistical methods as exemplified in decision theory, protocol development, artificial intelligence, etc. Educational computer based programs pertaining to medical informatics or medicine in general; Organizational, economic, social, clinical impact, ethical and cost-benefit aspects of IT applications in health care.
期刊最新文献
Machine learning for predicting outcomes of transcatheter aortic valve implantation: A systematic review AI-driven triage in emergency departments: A review of benefits, challenges, and future directions Predicting cancer survival at different stages: Insights from fair and explainable machine learning approaches The fading structural prominence of explanations in clinical studies Utilization, challenges, and training needs of digital health technologies: Perspectives from healthcare professionals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1