Signal theory based encryption of faster-than-Nyquist signals for fiber and wireless transmission.

Abhinand Venugopalan, Karanveer Singh, Janosch Meier, Thomas Schneider
{"title":"Signal theory based encryption of faster-than-Nyquist signals for fiber and wireless transmission.","authors":"Abhinand Venugopalan, Karanveer Singh, Janosch Meier, Thomas Schneider","doi":"10.1038/s44172-025-00351-3","DOIUrl":null,"url":null,"abstract":"<p><p>New applications such as the Internet of Things, autonomous driving, Industry X.0 and many more will transmit sensitive information via fibers and over the air with envisioned data rates beyond terabits per second. Therefore, the encryption has to be simple, fast and spectrally efficient, so that the power consumption and latency are low and the scarce bandwidth is not wasted. Various encryption schemes, based on mathematical algorithms, quantum theory, chaos communication or spectral spreading below the noise level have been explored. Besides power, spectral efficiency and latency, most of these approaches face additional challenges such as limited data rates, compatibility issues with communication standards and integration. Here, we propose a signal theory based method that enables the encryption of super-signals with bandwidths of hundreds of gigahertz without any additional bandwidth. In proof-of-concept experiments we demonstrate the encryption of a 270 GBd faster than Nyquist super-signal in a 252.4 GHz bandwidth. The encryption is simple, fast and power efficient, and offers a solution for secure data transmission in existing and future communication networks.</p>","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":"4 1","pages":"13"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11779797/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44172-025-00351-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

New applications such as the Internet of Things, autonomous driving, Industry X.0 and many more will transmit sensitive information via fibers and over the air with envisioned data rates beyond terabits per second. Therefore, the encryption has to be simple, fast and spectrally efficient, so that the power consumption and latency are low and the scarce bandwidth is not wasted. Various encryption schemes, based on mathematical algorithms, quantum theory, chaos communication or spectral spreading below the noise level have been explored. Besides power, spectral efficiency and latency, most of these approaches face additional challenges such as limited data rates, compatibility issues with communication standards and integration. Here, we propose a signal theory based method that enables the encryption of super-signals with bandwidths of hundreds of gigahertz without any additional bandwidth. In proof-of-concept experiments we demonstrate the encryption of a 270 GBd faster than Nyquist super-signal in a 252.4 GHz bandwidth. The encryption is simple, fast and power efficient, and offers a solution for secure data transmission in existing and future communication networks.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fully automated multicolour structured illumination module for super-resolution microscopy with two excitation colours. 3D evolutionarily designed metamaterials for scattering maximization. Revealing the mechanism of cold metal transfer. Additive manufacturing of a 3D-segmented plastic scintillator detector for tracking and calorimetry of elementary particles. Anthrone/XLPE: an adaptive charge capture intelligent insulation material for advanced electric power transmission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1