Nico P Weiß, Ulysse Rocabert, Cornelia Hoppe, Jens-Peter Zwick, Konrad Loewe, Maximilian Fries, Antti J Karttunen, Oliver Gutfleisch, Falk Muench
{"title":"Stable Operation of Copper-Protected La(FeMnSi)<sub>13</sub>H <sub><i>y</i></sub> Regenerators in a Magnetic Cooling Unit.","authors":"Nico P Weiß, Ulysse Rocabert, Cornelia Hoppe, Jens-Peter Zwick, Konrad Loewe, Maximilian Fries, Antti J Karttunen, Oliver Gutfleisch, Falk Muench","doi":"10.1021/acsaenm.4c00747","DOIUrl":null,"url":null,"abstract":"<p><p>Magnetic refrigeration leads the current commercialization efforts of ambient caloric cooling technologies, is considered among its peers most promising in terms of anticipated energy efficiency gain, and allows for complete elimination of harmful coolants. By now, functional magnetocaloric components (so-called regenerators) based on Mn-substituted and hydrogenated LaFeSi alloys are commercially available. However, this alloy system exhibits magnetostriction, is susceptible to fracture, oxidation, and does not passivate well, rendering it prone to failure and corrosion, particularly when using water as favorable heat exchange medium. Demonstrating stable and extended operation of LaFeSi-based regenerators under realistic conditions with cost-sensitive measures thus constitutes a key milestone for derisking the materials system, paving a path toward reliable and maintenance-friendly magnetic cooling devices. Building upon a fundamental analysis of materials properties, process, and target specifications, we outline a 2-fold protection strategy, encompassing a highly conformal copper coating working in tandem with a tailored inhibitor system. The former is applied using an optimized electroless plating procedure, allowing us to evenly envelop complex regenerator architectures in a dense, nondefective, homogeneous, and ductile copper film of excellent interfacial quality. The latter addresses the corrosion characteristics of both coating and substrate in the application environment. In-device aging experiments prove the effectiveness of our multifaceted approach in maintaining the chemical, mechanical, and functional integrity of LaFeSi regenerators under continuous use.</p>","PeriodicalId":55639,"journal":{"name":"ACS Applied Engineering Materials","volume":"3 1","pages":"256-265"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11773641/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Engineering Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsaenm.4c00747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/24 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Magnetic refrigeration leads the current commercialization efforts of ambient caloric cooling technologies, is considered among its peers most promising in terms of anticipated energy efficiency gain, and allows for complete elimination of harmful coolants. By now, functional magnetocaloric components (so-called regenerators) based on Mn-substituted and hydrogenated LaFeSi alloys are commercially available. However, this alloy system exhibits magnetostriction, is susceptible to fracture, oxidation, and does not passivate well, rendering it prone to failure and corrosion, particularly when using water as favorable heat exchange medium. Demonstrating stable and extended operation of LaFeSi-based regenerators under realistic conditions with cost-sensitive measures thus constitutes a key milestone for derisking the materials system, paving a path toward reliable and maintenance-friendly magnetic cooling devices. Building upon a fundamental analysis of materials properties, process, and target specifications, we outline a 2-fold protection strategy, encompassing a highly conformal copper coating working in tandem with a tailored inhibitor system. The former is applied using an optimized electroless plating procedure, allowing us to evenly envelop complex regenerator architectures in a dense, nondefective, homogeneous, and ductile copper film of excellent interfacial quality. The latter addresses the corrosion characteristics of both coating and substrate in the application environment. In-device aging experiments prove the effectiveness of our multifaceted approach in maintaining the chemical, mechanical, and functional integrity of LaFeSi regenerators under continuous use.
期刊介绍:
ACS Applied Engineering Materials is an international and interdisciplinary forum devoted to original research covering all aspects of engineered materials complementing the ACS Applied Materials portfolio. Papers that describe theory simulation modeling or machine learning assisted design of materials and that provide new insights into engineering applications are welcomed. The journal also considers experimental research that includes novel methods of preparing characterizing and evaluating new materials designed for timely applications. With its focus on innovative applications ACS Applied Engineering Materials also complements and expands the scope of existing ACS publications that focus on materials science discovery including Biomacromolecules Chemistry of Materials Crystal Growth & Design Industrial & Engineering Chemistry Research Inorganic Chemistry Langmuir and Macromolecules.The scope of ACS Applied Engineering Materials includes high quality research of an applied nature that integrates knowledge in materials science engineering physics mechanics and chemistry.