From prediction to practice: mitigating bias and data shift in machine-learning models for chemotherapy-induced organ dysfunction across unseen cancers.

BMJ oncology Pub Date : 2024-11-02 eCollection Date: 2024-01-01 DOI:10.1136/bmjonc-2024-000430
Matthew Watson, Pinkie Chambers, Luke Steventon, James Harmsworth King, Angelo Ercia, Heather Shaw, Noura Al Moubayed
{"title":"From prediction to practice: mitigating bias and data shift in machine-learning models for chemotherapy-induced organ dysfunction across unseen cancers.","authors":"Matthew Watson, Pinkie Chambers, Luke Steventon, James Harmsworth King, Angelo Ercia, Heather Shaw, Noura Al Moubayed","doi":"10.1136/bmjonc-2024-000430","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Routine monitoring of renal and hepatic function during chemotherapy ensures that treatment-related organ damage has not occurred and clearance of subsequent treatment is not hindered; however, frequency and timing are not optimal. Model bias and data heterogeneity concerns have hampered the ability of machine learning (ML) to be deployed into clinical practice. This study aims to develop models that could support individualised decisions on the timing of renal and hepatic monitoring while exploring the effect of data shift on model performance.</p><p><strong>Methods and analysis: </strong>We used retrospective data from three UK hospitals to develop and validate ML models predicting unacceptable rises in creatinine/bilirubin post cycle 3 for patients undergoing treatment for the following cancers: breast, colorectal, lung, ovarian and diffuse large B-cell lymphoma.</p><p><strong>Results: </strong>We extracted 3614 patients with no missing blood test data across cycles 1-6 of chemotherapy treatment. We improved on previous work by including predictions post cycle 3. Optimised for sensitivity, we achieve F2 scores of 0.7773 (bilirubin) and 0.6893 (creatinine) on unseen data. Performance is consistent on tumour types unseen during training (F2 bilirubin: 0.7423, F2 creatinine: 0.6820).</p><p><strong>Conclusion: </strong>Our technique highlights the effectiveness of ML in clinical settings, demonstrating the potential to improve the delivery of care. Notably, our ML models can generalise to unseen tumour types. We propose gold-standard bias mitigation steps for ML models: evaluation on multisite data, thorough patient population analysis, and both formalised bias measures and model performance comparisons on patient subgroups. We demonstrate that data aggregation techniques have unintended consequences on model bias.</p>","PeriodicalId":72436,"journal":{"name":"BMJ oncology","volume":"3 1","pages":"e000430"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11557724/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMJ oncology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1136/bmjonc-2024-000430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: Routine monitoring of renal and hepatic function during chemotherapy ensures that treatment-related organ damage has not occurred and clearance of subsequent treatment is not hindered; however, frequency and timing are not optimal. Model bias and data heterogeneity concerns have hampered the ability of machine learning (ML) to be deployed into clinical practice. This study aims to develop models that could support individualised decisions on the timing of renal and hepatic monitoring while exploring the effect of data shift on model performance.

Methods and analysis: We used retrospective data from three UK hospitals to develop and validate ML models predicting unacceptable rises in creatinine/bilirubin post cycle 3 for patients undergoing treatment for the following cancers: breast, colorectal, lung, ovarian and diffuse large B-cell lymphoma.

Results: We extracted 3614 patients with no missing blood test data across cycles 1-6 of chemotherapy treatment. We improved on previous work by including predictions post cycle 3. Optimised for sensitivity, we achieve F2 scores of 0.7773 (bilirubin) and 0.6893 (creatinine) on unseen data. Performance is consistent on tumour types unseen during training (F2 bilirubin: 0.7423, F2 creatinine: 0.6820).

Conclusion: Our technique highlights the effectiveness of ML in clinical settings, demonstrating the potential to improve the delivery of care. Notably, our ML models can generalise to unseen tumour types. We propose gold-standard bias mitigation steps for ML models: evaluation on multisite data, thorough patient population analysis, and both formalised bias measures and model performance comparisons on patient subgroups. We demonstrate that data aggregation techniques have unintended consequences on model bias.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Molecular and immune landscape of tumours in geriatric patients with non-small cell lung cancer, melanoma and renal cell carcinoma. Thirty years from FDA approval of pegylated liposomal doxorubicin (Doxil/Caelyx): an updated analysis and future perspective. Cancer incidence and competing mortality risk following 15 presenting symptoms in primary care: a population-based cohort study using electronic healthcare records. Which patients with symptoms should be referred urgently for investigation of suspected cancer? From prediction to practice: mitigating bias and data shift in machine-learning models for chemotherapy-induced organ dysfunction across unseen cancers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1