Dynamic tracking of tumor microenvironment modulation using Kaede photoconvertible transgenic mice unveils new biological properties of viral immunotherapy.
Anne R Diers, Qiuchen Guo, Zhi Li, Erin Richardson, Suaad Idris, Claire Willis, Paul P Tak, David R Withers, Francesca Barone
{"title":"Dynamic tracking of tumor microenvironment modulation using Kaede photoconvertible transgenic mice unveils new biological properties of viral immunotherapy.","authors":"Anne R Diers, Qiuchen Guo, Zhi Li, Erin Richardson, Suaad Idris, Claire Willis, Paul P Tak, David R Withers, Francesca Barone","doi":"10.1158/2767-9764.CRC-24-0434","DOIUrl":null,"url":null,"abstract":"<p><p>CAN-2409 is a replication-defective adenovirus that delivers the herpes simplex virus (HSV)-thymidine kinase gene to infected cells. Intratumoral administration of CAN-2409 followed by prodrug results in the formation of a toxic metabolite able to induce immunogenic cell death, exposure of tumor-associated antigens, and activation of local and systemic immune responses. We used a dynamic labeling model with MC38 tumor cells implanted in photoconvertible Kaede mice. Violet light was used to label the tumor microenvironment, distinguishing retained versus newly entering cells and allowing real-time monitoring of immune compartment changes within tumors. Administration of CAN-2409 + prodrug led to control of tumor growth and a significantly increased effector CD8+ T cell responses. Photolabeling of the tumor microenvironment (TME) revealed that rather than enhancing recruitment of T cells to the tumor, CAN-2409 altered the TME whereby newly entering and retained CD8+ T cells were significantly more proliferative. CAN-2409 supported reinvigoration of tumor associated antigen-specific CD8+ T cells and expansion of Tregs of an altered phenotype. Moreover, the combination of CAN-2409 + prodrug and anti-CTLA-4 antibody treatment further improved control of tumor growth, in part by the enhanced CD8+ T cell-mediated effector function and diminished Treg-mediated immunosuppression. Collectively, these data defined at least two temporally distinct pathways underpinning the mechanism of action of CAN-2409 action that overcome cell exhaustion and decreases immune suppression. The results also support the rationale for future clinical trials of CAN-2409 treatment combined with anti-CTLA-4 antibody therapy.</p>","PeriodicalId":72516,"journal":{"name":"Cancer research communications","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer research communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1158/2767-9764.CRC-24-0434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
CAN-2409 is a replication-defective adenovirus that delivers the herpes simplex virus (HSV)-thymidine kinase gene to infected cells. Intratumoral administration of CAN-2409 followed by prodrug results in the formation of a toxic metabolite able to induce immunogenic cell death, exposure of tumor-associated antigens, and activation of local and systemic immune responses. We used a dynamic labeling model with MC38 tumor cells implanted in photoconvertible Kaede mice. Violet light was used to label the tumor microenvironment, distinguishing retained versus newly entering cells and allowing real-time monitoring of immune compartment changes within tumors. Administration of CAN-2409 + prodrug led to control of tumor growth and a significantly increased effector CD8+ T cell responses. Photolabeling of the tumor microenvironment (TME) revealed that rather than enhancing recruitment of T cells to the tumor, CAN-2409 altered the TME whereby newly entering and retained CD8+ T cells were significantly more proliferative. CAN-2409 supported reinvigoration of tumor associated antigen-specific CD8+ T cells and expansion of Tregs of an altered phenotype. Moreover, the combination of CAN-2409 + prodrug and anti-CTLA-4 antibody treatment further improved control of tumor growth, in part by the enhanced CD8+ T cell-mediated effector function and diminished Treg-mediated immunosuppression. Collectively, these data defined at least two temporally distinct pathways underpinning the mechanism of action of CAN-2409 action that overcome cell exhaustion and decreases immune suppression. The results also support the rationale for future clinical trials of CAN-2409 treatment combined with anti-CTLA-4 antibody therapy.