Nanozymes meet hydrogels: Fabrication, progressive applications, and perspectives.

Manyan Qiu, Chaoxin Man, Qianyu Zhao, Xinyan Yang, Yu Zhang, Wei Zhang, Xianlong Zhang, Joseph Irudayaraj, Yujun Jiang
{"title":"Nanozymes meet hydrogels: Fabrication, progressive applications, and perspectives.","authors":"Manyan Qiu, Chaoxin Man, Qianyu Zhao, Xinyan Yang, Yu Zhang, Wei Zhang, Xianlong Zhang, Joseph Irudayaraj, Yujun Jiang","doi":"10.1016/j.cis.2025.103404","DOIUrl":null,"url":null,"abstract":"<p><p>Nanozyme, a class of emerging enzyme mimics, is the nanomaterials with enzyme-mimicking activity, which has obtained significant and widespread applications in various fields. However, they still face many challenges in practical applications (e.g., instability and low biocompatibility in the physiological environments), which affect their widespread applications to a certain extent. Hydrogels with superior performances (e.g., the controllable degradability, good biocompatibility, hydrophilic properties, and adjustable physical properties) may provide a promising strategy to make up the existing deficiencies of nanozymes in practical applications. Thus, the sapiential combination of nanozymes with hydrogels endows nanozyme hydrogels with both characteristics of nanozymes and properties of hydrogels, making nanozyme hydrogels become novel multifunctional materials. In this review, we comprehensively summarizes the preparation, properties, and progressive applications of nanozyme hydrogels. First of all, the main design and preparation strategies of nanozyme hydrogels are considerately summarized. Then, the properties of different nanozyme hydrogels are introduced. In addition, sophisticated applications of nanozyme hydrogels in the fields of biosensing, biomedicine applications, and environmental are comprehensively summarized. Most importantly, future obstacles and chances in this emerging field are profoundly proposed. This review will provide a new horizon for the development and future applications of novel nanozyme hydrogels.</p>","PeriodicalId":93859,"journal":{"name":"Advances in colloid and interface science","volume":"338 ","pages":"103404"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in colloid and interface science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cis.2025.103404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nanozyme, a class of emerging enzyme mimics, is the nanomaterials with enzyme-mimicking activity, which has obtained significant and widespread applications in various fields. However, they still face many challenges in practical applications (e.g., instability and low biocompatibility in the physiological environments), which affect their widespread applications to a certain extent. Hydrogels with superior performances (e.g., the controllable degradability, good biocompatibility, hydrophilic properties, and adjustable physical properties) may provide a promising strategy to make up the existing deficiencies of nanozymes in practical applications. Thus, the sapiential combination of nanozymes with hydrogels endows nanozyme hydrogels with both characteristics of nanozymes and properties of hydrogels, making nanozyme hydrogels become novel multifunctional materials. In this review, we comprehensively summarizes the preparation, properties, and progressive applications of nanozyme hydrogels. First of all, the main design and preparation strategies of nanozyme hydrogels are considerately summarized. Then, the properties of different nanozyme hydrogels are introduced. In addition, sophisticated applications of nanozyme hydrogels in the fields of biosensing, biomedicine applications, and environmental are comprehensively summarized. Most importantly, future obstacles and chances in this emerging field are profoundly proposed. This review will provide a new horizon for the development and future applications of novel nanozyme hydrogels.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adsorption and wetting properties of biosurfactants, Tritons and their mixtures in aqueous and water-ethanol environment. Advancements in electromagnetic microwave absorbers: Ferrites and carbonaceous materials. Laser processing materials for photo-to-thermal applications. Combining functionalities-nanoarchitectonics for combatting bacterial infection. Design and engineering of microenvironments of supported catalysts toward more efficient chemical synthesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1