Therapeutic Effects of Natural Products in the Treatment of Chronic Diseases: The Role in Regulating KEAP1-NRF2 Pathway.

The American journal of Chinese medicine Pub Date : 2025-01-01 Epub Date: 2025-01-29 DOI:10.1142/S0192415X25500041
Yaling Li, Xijia Wang, Shuyue Li, Lei Wang, Ningning Ding, Yali She, Changtian Li
{"title":"Therapeutic Effects of Natural Products in the Treatment of Chronic Diseases: The Role in Regulating KEAP1-NRF2 Pathway.","authors":"Yaling Li, Xijia Wang, Shuyue Li, Lei Wang, Ningning Ding, Yali She, Changtian Li","doi":"10.1142/S0192415X25500041","DOIUrl":null,"url":null,"abstract":"<p><p>Oxidative stress represents a pivotal mechanism in the pathogenesis of numerous chronic diseases. The Kelch-like ECH-associated protein 1-transcription factor NF-E2 p45-related factor 2 (KEAP1-NRF2) pathway plays a crucial role in maintaining redox homeostasis and regulating a multitude of biological processes such as inflammation, protein homeostasis, and metabolic homeostasis. In this paper, we present the findings of recent studies on the KEAP1-NRF2 pathway, which have revealed that it is aberrantly regulated and induces oxidative stress injury in a variety of diseases such as neurodegenerative diseases, cardiovascular diseases, metabolic diseases, respiratory diseases, digestive diseases, and cancer. Given this evidence, targeting KEAP1-NRF2 represents a highly promising avenue for developing therapeutic strategies for chronic diseases, and thus the development of appropriate therapeutic strategies based on the targeting of the NRF2 pathway has emerged as a significant area of research interest. This paper highlights an overview of current strategies to modulate KEAP1-NRF2, as well as recent advances in the use of natural compounds and traditional Chinese medicine, with a view to providing meaningful guidelines for drug discovery and development targeting KEAP1-NRF2. Additionally, it discusses the challenges associated with harnessing NRF2 as a therapeutic target.</p>","PeriodicalId":94221,"journal":{"name":"The American journal of Chinese medicine","volume":" ","pages":"67-96"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The American journal of Chinese medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0192415X25500041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/29 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Oxidative stress represents a pivotal mechanism in the pathogenesis of numerous chronic diseases. The Kelch-like ECH-associated protein 1-transcription factor NF-E2 p45-related factor 2 (KEAP1-NRF2) pathway plays a crucial role in maintaining redox homeostasis and regulating a multitude of biological processes such as inflammation, protein homeostasis, and metabolic homeostasis. In this paper, we present the findings of recent studies on the KEAP1-NRF2 pathway, which have revealed that it is aberrantly regulated and induces oxidative stress injury in a variety of diseases such as neurodegenerative diseases, cardiovascular diseases, metabolic diseases, respiratory diseases, digestive diseases, and cancer. Given this evidence, targeting KEAP1-NRF2 represents a highly promising avenue for developing therapeutic strategies for chronic diseases, and thus the development of appropriate therapeutic strategies based on the targeting of the NRF2 pathway has emerged as a significant area of research interest. This paper highlights an overview of current strategies to modulate KEAP1-NRF2, as well as recent advances in the use of natural compounds and traditional Chinese medicine, with a view to providing meaningful guidelines for drug discovery and development targeting KEAP1-NRF2. Additionally, it discusses the challenges associated with harnessing NRF2 as a therapeutic target.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Berberine Inhibited SASP-Related Inflammation through RXRα/PPARγ/NEDD4 Pathway in Atherosclerosis. Ameliorative Effect of Glycyrrhizic Acid on Diosbulbin B-Induced Liver Injury and Its Mechanism. A Hepatic Oxidative Metabolite of Palmatine Ameliorates DSS-Induced Ulcerative Colitis by Regulating Macrophage Polarization Through AMPK/NF-κB Pathway. Advancements in the Research of Astragalus membranaceus for the Treatment of Colorectal Cancer. Advances in Pharmacological Research on Icaritin: A Comprehensive Review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1