Integrative analysis of the metabolome and transcriptome provides insights into the mechanisms of flavonoid biosynthesis in Polygonatum.

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES PLoS ONE Pub Date : 2025-01-31 eCollection Date: 2025-01-01 DOI:10.1371/journal.pone.0318026
Xiaolin Wan, Qiang Xiao
{"title":"Integrative analysis of the metabolome and transcriptome provides insights into the mechanisms of flavonoid biosynthesis in Polygonatum.","authors":"Xiaolin Wan, Qiang Xiao","doi":"10.1371/journal.pone.0318026","DOIUrl":null,"url":null,"abstract":"<p><p>A noteworthy group of culinary and medicinal plants is Polygonatum species. They are known for their abundant flavonoid compound-rich rhizomes, which have antioxidative and anticancer activities. Using Polygonatum sibiricum Red (SXHZ) and Polygonatum kingianum var. grandifolium (HBES), we conducted transcriptome and metabolomic investigations to look into the molecular processes that control the manufacture of these flavonoids in Polygonatum plants. Seven distinct flavonoid metabolites were identified by the analytical data, with phloretin exhibiting a notable differential expression in the biosynthetic pathway. 30 genes with differential expression were found in both plants after further investigation, five of which are members of the transcription factor family associated with MBW. Thus, we suggest that Phloretin and the genes belonging to the MYB-related transcription factor family play a crucial role in controlling the flavonoid biosynthesis pathway in Polygonatum. This work lays the groundwork for a deeper comprehension of the biosynthesis and metabolic processes of flavonoids in Polygonatum, serving as an invaluable resource for the development of the polygonatum-related pharmaceutical industries as well as for the future breeding of Polygonatum plants with higher flavonoid content.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 1","pages":"e0318026"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0318026","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

A noteworthy group of culinary and medicinal plants is Polygonatum species. They are known for their abundant flavonoid compound-rich rhizomes, which have antioxidative and anticancer activities. Using Polygonatum sibiricum Red (SXHZ) and Polygonatum kingianum var. grandifolium (HBES), we conducted transcriptome and metabolomic investigations to look into the molecular processes that control the manufacture of these flavonoids in Polygonatum plants. Seven distinct flavonoid metabolites were identified by the analytical data, with phloretin exhibiting a notable differential expression in the biosynthetic pathway. 30 genes with differential expression were found in both plants after further investigation, five of which are members of the transcription factor family associated with MBW. Thus, we suggest that Phloretin and the genes belonging to the MYB-related transcription factor family play a crucial role in controlling the flavonoid biosynthesis pathway in Polygonatum. This work lays the groundwork for a deeper comprehension of the biosynthesis and metabolic processes of flavonoids in Polygonatum, serving as an invaluable resource for the development of the polygonatum-related pharmaceutical industries as well as for the future breeding of Polygonatum plants with higher flavonoid content.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
PLoS ONE
PLoS ONE 生物-生物学
CiteScore
6.20
自引率
5.40%
发文量
14242
审稿时长
3.7 months
期刊介绍: PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides: * Open-access—freely accessible online, authors retain copyright * Fast publication times * Peer review by expert, practicing researchers * Post-publication tools to indicate quality and impact * Community-based dialogue on articles * Worldwide media coverage
期刊最新文献
The effects of a single bout of high intensity exercise on stress reactivity, mind wandering, and lecture comprehension in young adults. Goal-line oracles: Exploring accuracy of wisdom of the crowd for football predictions. Integrative analysis of the metabolome and transcriptome provides insights into the mechanisms of flavonoid biosynthesis in Polygonatum. Late initiation of antenatal care visit amid implementation of new antenatal care model in Sub-Saharan African countries: A multilevel analysis of multination population survey data. Herbivore functions in the hot-seat: Resilience of Acanthurus triostegus to marine heatwaves.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1