{"title":"Baseline-free localization and quantification of structural damage using spectral response","authors":"Sayandip Ganguly, Koushik Roy","doi":"10.1016/j.apm.2025.115967","DOIUrl":null,"url":null,"abstract":"<div><div>Localization of damage using modal parameter changes has been the focus of research in many recent studies. Efforts have also been made to establish an analytical correlation between changes in modal response from the healthy state and the eventual reduction in stiffness. Prevailing methodologies predominantly integrate baseline responses to attain these objectives. However, non-availability of pre-recorded data practically complicates the application of reference state-based damage investigations. In the present study, a novel formulation is proposed for evaluation of existing crack with spectral responses of only damaged state. Efficiency of derived mathematical formulation is numerically verified on a shear building with several damage cases. Robustness of the method is then examined through noise sensitivity analysis. Further, an experimental investigation is conducted on a reduced scale in-house steel building model. Two cases of damage severity are examined by introducing reduced cross-sectional member at the damage location. Finally, practical applicability of the method is explored with a case study using real post-damage data of a 7-story building. Significant accuracy evolved from these exhaustive analyses, highlights the potential of present baseline-free damage quantification technique. This instantaneous data-based methodology can further be extended in future to assess residual useful life of a structure.</div></div>","PeriodicalId":50980,"journal":{"name":"Applied Mathematical Modelling","volume":"142 ","pages":"Article 115967"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematical Modelling","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0307904X25000423","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Localization of damage using modal parameter changes has been the focus of research in many recent studies. Efforts have also been made to establish an analytical correlation between changes in modal response from the healthy state and the eventual reduction in stiffness. Prevailing methodologies predominantly integrate baseline responses to attain these objectives. However, non-availability of pre-recorded data practically complicates the application of reference state-based damage investigations. In the present study, a novel formulation is proposed for evaluation of existing crack with spectral responses of only damaged state. Efficiency of derived mathematical formulation is numerically verified on a shear building with several damage cases. Robustness of the method is then examined through noise sensitivity analysis. Further, an experimental investigation is conducted on a reduced scale in-house steel building model. Two cases of damage severity are examined by introducing reduced cross-sectional member at the damage location. Finally, practical applicability of the method is explored with a case study using real post-damage data of a 7-story building. Significant accuracy evolved from these exhaustive analyses, highlights the potential of present baseline-free damage quantification technique. This instantaneous data-based methodology can further be extended in future to assess residual useful life of a structure.
期刊介绍:
Applied Mathematical Modelling focuses on research related to the mathematical modelling of engineering and environmental processes, manufacturing, and industrial systems. A significant emerging area of research activity involves multiphysics processes, and contributions in this area are particularly encouraged.
This influential publication covers a wide spectrum of subjects including heat transfer, fluid mechanics, CFD, and transport phenomena; solid mechanics and mechanics of metals; electromagnets and MHD; reliability modelling and system optimization; finite volume, finite element, and boundary element procedures; modelling of inventory, industrial, manufacturing and logistics systems for viable decision making; civil engineering systems and structures; mineral and energy resources; relevant software engineering issues associated with CAD and CAE; and materials and metallurgical engineering.
Applied Mathematical Modelling is primarily interested in papers developing increased insights into real-world problems through novel mathematical modelling, novel applications or a combination of these. Papers employing existing numerical techniques must demonstrate sufficient novelty in the solution of practical problems. Papers on fuzzy logic in decision-making or purely financial mathematics are normally not considered. Research on fractional differential equations, bifurcation, and numerical methods needs to include practical examples. Population dynamics must solve realistic scenarios. Papers in the area of logistics and business modelling should demonstrate meaningful managerial insight. Submissions with no real-world application will not be considered.