{"title":"Coupling of non-hydrostatic model with unresolved point-particle model for simulating particle-laden free surface flows","authors":"Yuhang Chen , Yongping Chen , Zhenshan Xu , Pengzhi Lin , Zhihua Xie","doi":"10.1016/j.apm.2025.115962","DOIUrl":null,"url":null,"abstract":"<div><div>Sediment-laden flow is a common phenomenon in nature and the deposition of sediments can make a great difference in landscape formation or marine systems. The complexity of this issue can be further increased with temporal variations in the free surface elevation. This paper aims to present a two-phase flow model that effectively integrates the non-hydrostatic free surface model with the Lagrangian point-particle model. The free surface elevation is conceptualized as a height function and is tracked using a Lagrangian-Eulerian method. This new model is validated by five test cases, showing a good agreement with analytical or experimental results. This demonstrates the model's proficiency in handling sediment-laden flow under various free surface flow conditions, particularly with surface waves. Consequently, the proposed model holds promise for investigating sediment-laden flow issues in coastal regions.</div></div>","PeriodicalId":50980,"journal":{"name":"Applied Mathematical Modelling","volume":"142 ","pages":"Article 115962"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematical Modelling","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0307904X2500037X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Sediment-laden flow is a common phenomenon in nature and the deposition of sediments can make a great difference in landscape formation or marine systems. The complexity of this issue can be further increased with temporal variations in the free surface elevation. This paper aims to present a two-phase flow model that effectively integrates the non-hydrostatic free surface model with the Lagrangian point-particle model. The free surface elevation is conceptualized as a height function and is tracked using a Lagrangian-Eulerian method. This new model is validated by five test cases, showing a good agreement with analytical or experimental results. This demonstrates the model's proficiency in handling sediment-laden flow under various free surface flow conditions, particularly with surface waves. Consequently, the proposed model holds promise for investigating sediment-laden flow issues in coastal regions.
期刊介绍:
Applied Mathematical Modelling focuses on research related to the mathematical modelling of engineering and environmental processes, manufacturing, and industrial systems. A significant emerging area of research activity involves multiphysics processes, and contributions in this area are particularly encouraged.
This influential publication covers a wide spectrum of subjects including heat transfer, fluid mechanics, CFD, and transport phenomena; solid mechanics and mechanics of metals; electromagnets and MHD; reliability modelling and system optimization; finite volume, finite element, and boundary element procedures; modelling of inventory, industrial, manufacturing and logistics systems for viable decision making; civil engineering systems and structures; mineral and energy resources; relevant software engineering issues associated with CAD and CAE; and materials and metallurgical engineering.
Applied Mathematical Modelling is primarily interested in papers developing increased insights into real-world problems through novel mathematical modelling, novel applications or a combination of these. Papers employing existing numerical techniques must demonstrate sufficient novelty in the solution of practical problems. Papers on fuzzy logic in decision-making or purely financial mathematics are normally not considered. Research on fractional differential equations, bifurcation, and numerical methods needs to include practical examples. Population dynamics must solve realistic scenarios. Papers in the area of logistics and business modelling should demonstrate meaningful managerial insight. Submissions with no real-world application will not be considered.