Wietse M. Boon , Nicola R. Franco , Alessio Fumagalli
{"title":"Neural network solvers for parametrized elasticity problems that conserve linear and angular momentum","authors":"Wietse M. Boon , Nicola R. Franco , Alessio Fumagalli","doi":"10.1016/j.cma.2025.117759","DOIUrl":null,"url":null,"abstract":"<div><div>We consider a mixed formulation of parametrized elasticity problems in terms of stress, displacement, and rotation. The latter two variables act as Lagrange multipliers to enforce the conservation of linear and angular momentum. The resulting system is computationally demanding to solve directly, especially if various instances of the model parameters need to be investigated. We therefore propose a reduced order modeling strategy that efficiently produces an approximate solution, while guaranteeing conservation of linear and angular momentum in the computed stress. First, we obtain a stress field that balances the body and the boundary forces by solving a triangular system, generated with the use of a spanning tree in the grid. Second, a trained neural network is employed to rapidly compute a correction without affecting the conservation equations. The displacement and rotation fields can be obtained by post-processing. The potential of the approach is highlighted by three numerical test cases, including a three-dimensional and a non-linear model.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"437 ","pages":"Article 117759"},"PeriodicalIF":6.9000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782525000313","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We consider a mixed formulation of parametrized elasticity problems in terms of stress, displacement, and rotation. The latter two variables act as Lagrange multipliers to enforce the conservation of linear and angular momentum. The resulting system is computationally demanding to solve directly, especially if various instances of the model parameters need to be investigated. We therefore propose a reduced order modeling strategy that efficiently produces an approximate solution, while guaranteeing conservation of linear and angular momentum in the computed stress. First, we obtain a stress field that balances the body and the boundary forces by solving a triangular system, generated with the use of a spanning tree in the grid. Second, a trained neural network is employed to rapidly compute a correction without affecting the conservation equations. The displacement and rotation fields can be obtained by post-processing. The potential of the approach is highlighted by three numerical test cases, including a three-dimensional and a non-linear model.
期刊介绍:
Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.