A bioinspired multi-layer assembly method for mechanical metamaterials with extreme properties using topology optimization

IF 6.9 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Computer Methods in Applied Mechanics and Engineering Pub Date : 2025-02-19 DOI:10.1016/j.cma.2025.117850
Peng Yin , Baotong Li , Yue Zhang , Bang Li , Jun Hong , Xiaohu Li , Xiaoming Chen , Jinyou Shao
{"title":"A bioinspired multi-layer assembly method for mechanical metamaterials with extreme properties using topology optimization","authors":"Peng Yin ,&nbsp;Baotong Li ,&nbsp;Yue Zhang ,&nbsp;Bang Li ,&nbsp;Jun Hong ,&nbsp;Xiaohu Li ,&nbsp;Xiaoming Chen ,&nbsp;Jinyou Shao","doi":"10.1016/j.cma.2025.117850","DOIUrl":null,"url":null,"abstract":"<div><div>Inspired by the hierarchical distribution pattern of natural bamboo, this study presents a multi-layer assembly strategy for the design of mechanical metamaterials with extreme properties. Firstly, the material spatial layout is constructed by employing a bio-inspired arrangement with two types of cells distributed in a staggered manner. Based on this arrangement, a new theoretical model for evaluating material properties is then developed, which in turn determines the requirements of extreme material properties on cell properties. Finally, to obtain materials with extreme mechanical properties, a topology optimization method is adopted for the generation of cell geometries with the needed properties. The numerical experiment results indicate that compared to the homogeneous material consisting of basic cells, the Young's modulus of assembled metamaterials with similar density is enhanced by more than three orders of magnitude and up to 6273 times. Further, a series of materials with extreme Young's modulus approaching the theoretical limit are identified by geometric parameter optimization for specific topologies. Such metamaterials based on assembly strategies are capable of taking full advantage of geometric variations to enhance mechanical properties, thus having a wide range of applications in various fields such as energy absorption, impact protection, and strain sensing.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"438 ","pages":"Article 117850"},"PeriodicalIF":6.9000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782525001227","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Inspired by the hierarchical distribution pattern of natural bamboo, this study presents a multi-layer assembly strategy for the design of mechanical metamaterials with extreme properties. Firstly, the material spatial layout is constructed by employing a bio-inspired arrangement with two types of cells distributed in a staggered manner. Based on this arrangement, a new theoretical model for evaluating material properties is then developed, which in turn determines the requirements of extreme material properties on cell properties. Finally, to obtain materials with extreme mechanical properties, a topology optimization method is adopted for the generation of cell geometries with the needed properties. The numerical experiment results indicate that compared to the homogeneous material consisting of basic cells, the Young's modulus of assembled metamaterials with similar density is enhanced by more than three orders of magnitude and up to 6273 times. Further, a series of materials with extreme Young's modulus approaching the theoretical limit are identified by geometric parameter optimization for specific topologies. Such metamaterials based on assembly strategies are capable of taking full advantage of geometric variations to enhance mechanical properties, thus having a wide range of applications in various fields such as energy absorption, impact protection, and strain sensing.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.70
自引率
15.30%
发文量
719
审稿时长
44 days
期刊介绍: Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.
期刊最新文献
Editorial Board Advanced deep learning framework for multi-scale prediction of mechanical properties from microstructural features in polycrystalline materials Hemodynamics modeling with physics-informed neural networks: A progressive boundary complexity approach Parallel spatiotemporal order-reduced Gaussian process for dynamic full-field multi-physics prediction of hypervelocity collisions in real-time with limited data A bioinspired multi-layer assembly method for mechanical metamaterials with extreme properties using topology optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1