Innovative dual-band energy-efficient smart windows using VO2(M)-Based Fabry-Pérot structures for solar and radiative cooling modulation

IF 10 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Today Physics Pub Date : 2025-01-31 DOI:10.1016/j.mtphys.2025.101665
Joonho Keum , Jun Choi , Sujin Kim , Guyoung Kang , Byuonghong Lee , Min Jae Lee , Woochul Kim
{"title":"Innovative dual-band energy-efficient smart windows using VO2(M)-Based Fabry-Pérot structures for solar and radiative cooling modulation","authors":"Joonho Keum ,&nbsp;Jun Choi ,&nbsp;Sujin Kim ,&nbsp;Guyoung Kang ,&nbsp;Byuonghong Lee ,&nbsp;Min Jae Lee ,&nbsp;Woochul Kim","doi":"10.1016/j.mtphys.2025.101665","DOIUrl":null,"url":null,"abstract":"<div><div>Thermochromic windows have been studied as a promising solution for energy-efficiency with the dynamical adjustment of solar heating in response to temperature. Recent advancements in the field have introduced simultaneous multiband modulation, incorporating radiative cooling in the longwave infrared range. In this work, we present VO<sub>2</sub>(M)/TiO<sub>2</sub>(A)/ITO multilayer-coated glass (referred to as VTI) as a scalable and effective smart window that modulates both solar transmission and radiative cooling concurrently. As a semitransparent window in the solar spectrum, the VTI coating achieves nearly 100 % visual clarity, 38.5 % visible transparency, and 8.5 % modulation of solar transmittance. In the longwave infrared region, the VTI multilayer demonstrates an exceptional broadband emissivity shift of up to 42.5 %, made possible by an innovative Fabry-Pérot (F-P) cavity composed of absorbing metal oxides. This high degree of emissivity modulation is maintained across a wide range of spacer thicknesses, from 100 to 500 nm, as confirmed by both experimental data and simulations. The modulation mechanism of the F-P cavity which use ultrathin spacer (<em>λ</em>/140 ∼ <em>λ</em>/16) at its resonant absorption range is explained through incremental phasor analysis by the transfer-matrix method. Additionally, the scalability and practicality of the VTI film are supported by its three-layer composition and the room-temperature reactive magnetron sputtering deposition process. These results suggest that the design principles presented here could inspire further innovations in broadband longwave infrared emissivity modulation, utilizing ultrathin F-P cavities composed of semitransparent metal oxides.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"52 ","pages":"Article 101665"},"PeriodicalIF":10.0000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529325000215","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Thermochromic windows have been studied as a promising solution for energy-efficiency with the dynamical adjustment of solar heating in response to temperature. Recent advancements in the field have introduced simultaneous multiband modulation, incorporating radiative cooling in the longwave infrared range. In this work, we present VO2(M)/TiO2(A)/ITO multilayer-coated glass (referred to as VTI) as a scalable and effective smart window that modulates both solar transmission and radiative cooling concurrently. As a semitransparent window in the solar spectrum, the VTI coating achieves nearly 100 % visual clarity, 38.5 % visible transparency, and 8.5 % modulation of solar transmittance. In the longwave infrared region, the VTI multilayer demonstrates an exceptional broadband emissivity shift of up to 42.5 %, made possible by an innovative Fabry-Pérot (F-P) cavity composed of absorbing metal oxides. This high degree of emissivity modulation is maintained across a wide range of spacer thicknesses, from 100 to 500 nm, as confirmed by both experimental data and simulations. The modulation mechanism of the F-P cavity which use ultrathin spacer (λ/140 ∼ λ/16) at its resonant absorption range is explained through incremental phasor analysis by the transfer-matrix method. Additionally, the scalability and practicality of the VTI film are supported by its three-layer composition and the room-temperature reactive magnetron sputtering deposition process. These results suggest that the design principles presented here could inspire further innovations in broadband longwave infrared emissivity modulation, utilizing ultrathin F-P cavities composed of semitransparent metal oxides.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
期刊最新文献
NEA GaAs Photocathode for Electron Source: From Growth, Cleaning, Activation to Performance Abnormal thermal conductivity increase in β-Ga2O3 by an unconventional bonding mechanism using machine-learning potential MXene Nb2C/MoS2 heterostructure: Nonlinear optical properties and a new broadband saturable absorber for ultrafast photonics Low-temperature annealing induces superior shock-resistant performance in FeCoCrNiCu high-entropy alloy Effectively tuning phonon transport across Al/nonmetal interfaces through controlling interfacial bonding strength without modifying thermal conductivity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1