Shima Baharlouei , Jamie M. Taylor , Carlos Uriarte , David Pardo
{"title":"A Least-Squares-Based Neural Network (LS-Net) for Solving Linear Parametric PDEs","authors":"Shima Baharlouei , Jamie M. Taylor , Carlos Uriarte , David Pardo","doi":"10.1016/j.cma.2025.117757","DOIUrl":null,"url":null,"abstract":"<div><div>Developing efficient methods for solving parametric partial differential equations is crucial for addressing inverse problems. This work introduces a Least-Squares-based Neural Network (LS-Net) method for solving linear parametric PDEs. It utilizes a separated representation form for the parametric PDE solution via a deep neural network and a least-squares solver. In this approach, the output of the deep neural network consists of a vector-valued function, interpreted as basis functions for the parametric solution space, and the least-squares solver determines the optimal solution within the constructed solution space for each given parameter. The LS-Net method requires a quadratic loss function for the least-squares solver to find optimal solutions given the set of basis functions. In this study, we consider loss functions derived from the Deep Fourier Residual and Physics-Informed Neural Networks approaches. We also provide theoretical results similar to the Universal Approximation Theorem, stating that there exists a sufficiently large neural network that can theoretically approximate solutions of parametric PDEs with the desired accuracy. We illustrate the LS-net method by solving one- and two-dimensional problems. Numerical results clearly demonstrate the method’s ability to approximate parametric solutions.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"437 ","pages":"Article 117757"},"PeriodicalIF":6.9000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782525000295","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Developing efficient methods for solving parametric partial differential equations is crucial for addressing inverse problems. This work introduces a Least-Squares-based Neural Network (LS-Net) method for solving linear parametric PDEs. It utilizes a separated representation form for the parametric PDE solution via a deep neural network and a least-squares solver. In this approach, the output of the deep neural network consists of a vector-valued function, interpreted as basis functions for the parametric solution space, and the least-squares solver determines the optimal solution within the constructed solution space for each given parameter. The LS-Net method requires a quadratic loss function for the least-squares solver to find optimal solutions given the set of basis functions. In this study, we consider loss functions derived from the Deep Fourier Residual and Physics-Informed Neural Networks approaches. We also provide theoretical results similar to the Universal Approximation Theorem, stating that there exists a sufficiently large neural network that can theoretically approximate solutions of parametric PDEs with the desired accuracy. We illustrate the LS-net method by solving one- and two-dimensional problems. Numerical results clearly demonstrate the method’s ability to approximate parametric solutions.
期刊介绍:
Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.