MOSAEC-DB: a comprehensive database of experimental metal–organic frameworks with verified chemical accuracy suitable for molecular simulations

IF 7.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Chemical Science Pub Date : 2025-01-31 DOI:10.1039/d4sc07438f
Marco Gibaldi, Anna Kapeliukha, Andrew White, Jun Luo, Robert Alex Mayo, Jake Burner, Tom K. Woo
{"title":"MOSAEC-DB: a comprehensive database of experimental metal–organic frameworks with verified chemical accuracy suitable for molecular simulations","authors":"Marco Gibaldi, Anna Kapeliukha, Andrew White, Jun Luo, Robert Alex Mayo, Jake Burner, Tom K. Woo","doi":"10.1039/d4sc07438f","DOIUrl":null,"url":null,"abstract":"Ongoing developments in computational databases seek to improve the accessibility and breadth of high-throughput screening and materials discovery efforts. Their reliance on experimental crystal structures necessitates significant processing prior to computation in order to resolve any crystallographic disorder or partial occupancies and remove any residual solvent molecules in the case of activated porous materials. Contemporary investigations revealed that deficiencies in the experimental characterization and computational preprocessing methods generated considerable occurrence of structural errors in metal–organic framework (MOF) databases. The MOSAEC MOF database (MOSAEC-DB) tackles these structural reliability concerns through utilization of innovative preprocessing and error analysis protocols applying the concepts of oxidation state and formal charge to exclude erroneous crystal structures. Comprising more than 124k crystal structures, this work maintains the largest and most accurate dataset of experimental MOFs ready for immediate deployment in molecular simulations. The databases' comparative diversity is demonstrated through its enhanced coverage of the periodic table, expansive quantity of structures, and balance of chemical properties relative to existing MOF databases. Chemical and geometric descriptors, as well as DFT electrostatic potential-fitted charges, are included to facilitate subsequent atomistic simulation and machine-learning (ML) studies. Curated subsets—sampled according to their chemical properties and structural uniqueness—are also provided to further enable ML studies in recognition of the strict demand for duplicate structure elimination and dataset diversity in such applications.","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":"37 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4sc07438f","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ongoing developments in computational databases seek to improve the accessibility and breadth of high-throughput screening and materials discovery efforts. Their reliance on experimental crystal structures necessitates significant processing prior to computation in order to resolve any crystallographic disorder or partial occupancies and remove any residual solvent molecules in the case of activated porous materials. Contemporary investigations revealed that deficiencies in the experimental characterization and computational preprocessing methods generated considerable occurrence of structural errors in metal–organic framework (MOF) databases. The MOSAEC MOF database (MOSAEC-DB) tackles these structural reliability concerns through utilization of innovative preprocessing and error analysis protocols applying the concepts of oxidation state and formal charge to exclude erroneous crystal structures. Comprising more than 124k crystal structures, this work maintains the largest and most accurate dataset of experimental MOFs ready for immediate deployment in molecular simulations. The databases' comparative diversity is demonstrated through its enhanced coverage of the periodic table, expansive quantity of structures, and balance of chemical properties relative to existing MOF databases. Chemical and geometric descriptors, as well as DFT electrostatic potential-fitted charges, are included to facilitate subsequent atomistic simulation and machine-learning (ML) studies. Curated subsets—sampled according to their chemical properties and structural uniqueness—are also provided to further enable ML studies in recognition of the strict demand for duplicate structure elimination and dataset diversity in such applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Science
Chemical Science CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
14.40
自引率
4.80%
发文量
1352
审稿时长
2.1 months
期刊介绍: Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.
期刊最新文献
Anti-Poisoning of CO and Carbonyl Species over Pd Catalysts During the Electrooxidation of Ethylene Glycol to Glycolic Acid at Elevated Current Density On the nature of high-spin forms in the S2 state of the oxygen-evolving complex MOSAEC-DB: a comprehensive database of experimental metal–organic frameworks with verified chemical accuracy suitable for molecular simulations Celebrating 10 years of #RSCPoster Correction: Peptide macrocyclisation via intramolecular interception of visible-light-mediated desulfurisation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1