Using magnetic dynamics to measure the spin gap in a candidate Kitaev material

IF 5.4 1区 物理与天体物理 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY npj Quantum Materials Pub Date : 2025-02-01 DOI:10.1038/s41535-025-00737-8
Xinyi Jiang, Qingzheng Qiu, Cheng Peng, Hoyoung Jang, Wenjie Chen, Xianghong Jin, Li Yue, Byungjune Lee, Sang-Youn Park, Minseok Kim, Hyeong-Do Kim, Xinqiang Cai, Qizhi Li, Tao Dong, Nanlin Wang, Joshua J. Turner, Yuan Li, Yao Wang, Yingying Peng
{"title":"Using magnetic dynamics to measure the spin gap in a candidate Kitaev material","authors":"Xinyi Jiang, Qingzheng Qiu, Cheng Peng, Hoyoung Jang, Wenjie Chen, Xianghong Jin, Li Yue, Byungjune Lee, Sang-Youn Park, Minseok Kim, Hyeong-Do Kim, Xinqiang Cai, Qizhi Li, Tao Dong, Nanlin Wang, Joshua J. Turner, Yuan Li, Yao Wang, Yingying Peng","doi":"10.1038/s41535-025-00737-8","DOIUrl":null,"url":null,"abstract":"<p>Spin-orbit entangled materials have attracted widespread interest due to the novel magnetic phenomena arising from the interplay between spin-orbit coupling and electronic correlations. However, the intricate nature of spin interactions within Kiteav materials complicates the precise measurement of low-energy spin excitations. Using Na<sub>2</sub>Co<sub>2</sub>TeO<sub>6</sub> as an example, we study these low-energy spin excitations using the time-resolved resonant elastic x-ray scattering (tr-REXS). Our observations unveil remarkably slow spin dynamics at the magnetic peak, whose recovery timescale is several nanoseconds. This timescale aligns with the extrapolated spin gap of ~1 <i>μ</i>eV, obtained by density matrix renormalization group (DMRG) simulations in the thermodynamic limit. The consistency demonstrates the efficacy of tr-REXS in discerning low-energy spin gaps inaccessible to conventional spectroscopic techniques.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"1 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41535-025-00737-8","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Spin-orbit entangled materials have attracted widespread interest due to the novel magnetic phenomena arising from the interplay between spin-orbit coupling and electronic correlations. However, the intricate nature of spin interactions within Kiteav materials complicates the precise measurement of low-energy spin excitations. Using Na2Co2TeO6 as an example, we study these low-energy spin excitations using the time-resolved resonant elastic x-ray scattering (tr-REXS). Our observations unveil remarkably slow spin dynamics at the magnetic peak, whose recovery timescale is several nanoseconds. This timescale aligns with the extrapolated spin gap of ~1 μeV, obtained by density matrix renormalization group (DMRG) simulations in the thermodynamic limit. The consistency demonstrates the efficacy of tr-REXS in discerning low-energy spin gaps inaccessible to conventional spectroscopic techniques.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Quantum Materials
npj Quantum Materials Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
10.60
自引率
3.50%
发文量
107
审稿时长
6 weeks
期刊介绍: npj Quantum Materials is an open access journal that publishes works that significantly advance the understanding of quantum materials, including their fundamental properties, fabrication and applications.
期刊最新文献
Using magnetic dynamics to measure the spin gap in a candidate Kitaev material Intrinsic constraint on Tc for unconventional superconductivity Z2 flux binding to higher-spin impurities in the Kitaev spin liquid Discovery of new topological insulators and semimetals using deep generative models 2.5-dimensional topological superconductivity in twisted superconducting flakes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1