{"title":"Human-robot and robot-robot sound interaction using a 3-Dimensional Acoustic Ranging (3DAR) in audible and inaudible frequency","authors":"Semin Ahn, Jae-Hoon Kim, Jun Heo, Sung-Hoon Ahn","doi":"10.1016/j.rcim.2025.102970","DOIUrl":null,"url":null,"abstract":"Highly reliable sound-based interaction in noisy and dynamic environments is a known challenge with simultaneous Human-Robot Interaction (HRI) and Robot-Robot Interaction (RRI). Here, we introduce 3-dimensional acoustic ranging (3DAR) using the meta-structured single microphone rotation, a compact system with a three-dimensional meta-structure with a phase-cancellation mechanism for enhanced beamforming across audible and inaudible frequencies. Inspired by dolphin communication, the 3DAR employs frequency modulation and separation of sound channels for seamless HRI and RRI. The system achieved over 90 % accuracy in multiple source localization for HRI and 99 % for RRI, even in challenging noise conditions, along with 94 % accuracy in tracking multiple sound sources. Furthermore, real-world tests in a factory demonstrated 95.6 % accuracy in multi-HRI localization and up to 93.8 % accuracy when human speech direction originated from an angle of 120° relative to the system. Real-world application of a collaborative rescue robot confirmed effectiveness of the 3DAR in various applications, highlighting its potential for robust, sound-based collaboration among humans and robots.","PeriodicalId":21452,"journal":{"name":"Robotics and Computer-integrated Manufacturing","volume":"31 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Computer-integrated Manufacturing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.rcim.2025.102970","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Highly reliable sound-based interaction in noisy and dynamic environments is a known challenge with simultaneous Human-Robot Interaction (HRI) and Robot-Robot Interaction (RRI). Here, we introduce 3-dimensional acoustic ranging (3DAR) using the meta-structured single microphone rotation, a compact system with a three-dimensional meta-structure with a phase-cancellation mechanism for enhanced beamforming across audible and inaudible frequencies. Inspired by dolphin communication, the 3DAR employs frequency modulation and separation of sound channels for seamless HRI and RRI. The system achieved over 90 % accuracy in multiple source localization for HRI and 99 % for RRI, even in challenging noise conditions, along with 94 % accuracy in tracking multiple sound sources. Furthermore, real-world tests in a factory demonstrated 95.6 % accuracy in multi-HRI localization and up to 93.8 % accuracy when human speech direction originated from an angle of 120° relative to the system. Real-world application of a collaborative rescue robot confirmed effectiveness of the 3DAR in various applications, highlighting its potential for robust, sound-based collaboration among humans and robots.
期刊介绍:
The journal, Robotics and Computer-Integrated Manufacturing, focuses on sharing research applications that contribute to the development of new or enhanced robotics, manufacturing technologies, and innovative manufacturing strategies that are relevant to industry. Papers that combine theory and experimental validation are preferred, while review papers on current robotics and manufacturing issues are also considered. However, papers on traditional machining processes, modeling and simulation, supply chain management, and resource optimization are generally not within the scope of the journal, as there are more appropriate journals for these topics. Similarly, papers that are overly theoretical or mathematical will be directed to other suitable journals. The journal welcomes original papers in areas such as industrial robotics, human-robot collaboration in manufacturing, cloud-based manufacturing, cyber-physical production systems, big data analytics in manufacturing, smart mechatronics, machine learning, adaptive and sustainable manufacturing, and other fields involving unique manufacturing technologies.