Radiotheranostic landscape: A review of clinical and preclinical development

IF 8.6 1区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING European Journal of Nuclear Medicine and Molecular Imaging Pub Date : 2025-02-01 DOI:10.1007/s00259-025-07103-7
Ha H. Tran, Aiko Yamaguchi, H. Charles Manning
{"title":"Radiotheranostic landscape: A review of clinical and preclinical development","authors":"Ha H. Tran, Aiko Yamaguchi, H. Charles Manning","doi":"10.1007/s00259-025-07103-7","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Background</h3><p>Radiotheranostics combines diagnostic imaging with targeted radionuclide therapy, representing a transformative approach in precision oncology. Landmark approvals of Lutathera<sup>®</sup> and Pluvicto<sup>®</sup> have catalyzed significant advancements in this field, driving research into novel radionuclides, targeting strategies, and clinical applications. This review evaluates the evolving clinical and preclinical landscape of radiotheranostics, highlighting advancements, emerging trends, and persistent challenges in radionuclide therapy.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>A comprehensive analysis was performed, encompassing active clinical trials as of December 2024, sourced from ClinicalTrials.gov and TheranosticTrials.org. Preclinical developments were evaluated through a review of recent literature, focusing on innovations in radionuclide production, targeting molecules, and radiochemistry.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>In reviewing the clinical landscape, agents targeting somatostatin receptors (SSTR) and prostate-specific membrane antigen (PSMA) still dominate the field, but new targets such as fibroblast activation protein (FAP), integrins, and gastrin-releasing peptide receptors (GRPR) are gaining traction in both clinical and preclinical development. While small molecules and peptides remain the most common radionuclide carriers, antibody-based carriers including bispecific antibodies, immunoglobin-derived antigen-binding fragments, and antibody-mimetic proteins are on the rise due to their specificity and adaptability. Innovations in radioligand design are driving a shift from agonists to antagonists, accompanied by the development of modified peptides with enhanced pharmacokinetics and tumor-targeting properties. Next-generation therapeutic radionuclides, such as the beta-emitter terbium-161 and alpha-emitters actinium-225 and lead-212, are under investigation to complement or replace lutetium-177, addressing the need for improved efficacy and reduced toxicity. Paired isotopic radionuclides are gaining popularity for their ability to optimize imaging and therapeutic dosimetry as they offer near-identical specificity, biodistribution, and metabolism. Additionally, radiohybrid systems represent an innovative approach to chelating chemically distinct radionuclide pairs within a single molecule, further enhancing flexibility in radiotheranostic design.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>Radiotheranostics has transformed cancer care through its precision and adaptability, but challenges in radionuclide production, regulatory frameworks, and workforce training hinder broader adoption. Advances in isotopic pairing, next-generation radionuclides, and radiohybrid systems in preclinical and clinical settings hold promise to overcome these barriers. Collaborative efforts among academia, industry, and regulatory bodies are critical to accelerating innovation and optimizing clinical outcomes.</p>","PeriodicalId":11909,"journal":{"name":"European Journal of Nuclear Medicine and Molecular Imaging","volume":"34 1","pages":""},"PeriodicalIF":8.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Nuclear Medicine and Molecular Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00259-025-07103-7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Radiotheranostics combines diagnostic imaging with targeted radionuclide therapy, representing a transformative approach in precision oncology. Landmark approvals of Lutathera® and Pluvicto® have catalyzed significant advancements in this field, driving research into novel radionuclides, targeting strategies, and clinical applications. This review evaluates the evolving clinical and preclinical landscape of radiotheranostics, highlighting advancements, emerging trends, and persistent challenges in radionuclide therapy.

Methods

A comprehensive analysis was performed, encompassing active clinical trials as of December 2024, sourced from ClinicalTrials.gov and TheranosticTrials.org. Preclinical developments were evaluated through a review of recent literature, focusing on innovations in radionuclide production, targeting molecules, and radiochemistry.

Results

In reviewing the clinical landscape, agents targeting somatostatin receptors (SSTR) and prostate-specific membrane antigen (PSMA) still dominate the field, but new targets such as fibroblast activation protein (FAP), integrins, and gastrin-releasing peptide receptors (GRPR) are gaining traction in both clinical and preclinical development. While small molecules and peptides remain the most common radionuclide carriers, antibody-based carriers including bispecific antibodies, immunoglobin-derived antigen-binding fragments, and antibody-mimetic proteins are on the rise due to their specificity and adaptability. Innovations in radioligand design are driving a shift from agonists to antagonists, accompanied by the development of modified peptides with enhanced pharmacokinetics and tumor-targeting properties. Next-generation therapeutic radionuclides, such as the beta-emitter terbium-161 and alpha-emitters actinium-225 and lead-212, are under investigation to complement or replace lutetium-177, addressing the need for improved efficacy and reduced toxicity. Paired isotopic radionuclides are gaining popularity for their ability to optimize imaging and therapeutic dosimetry as they offer near-identical specificity, biodistribution, and metabolism. Additionally, radiohybrid systems represent an innovative approach to chelating chemically distinct radionuclide pairs within a single molecule, further enhancing flexibility in radiotheranostic design.

Conclusion

Radiotheranostics has transformed cancer care through its precision and adaptability, but challenges in radionuclide production, regulatory frameworks, and workforce training hinder broader adoption. Advances in isotopic pairing, next-generation radionuclides, and radiohybrid systems in preclinical and clinical settings hold promise to overcome these barriers. Collaborative efforts among academia, industry, and regulatory bodies are critical to accelerating innovation and optimizing clinical outcomes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
15.60
自引率
9.90%
发文量
392
审稿时长
3 months
期刊介绍: The European Journal of Nuclear Medicine and Molecular Imaging serves as a platform for the exchange of clinical and scientific information within nuclear medicine and related professions. It welcomes international submissions from professionals involved in the functional, metabolic, and molecular investigation of diseases. The journal's coverage spans physics, dosimetry, radiation biology, radiochemistry, and pharmacy, providing high-quality peer review by experts in the field. Known for highly cited and downloaded articles, it ensures global visibility for research work and is part of the EJNMMI journal family.
期刊最新文献
Evaluation of deep learning-based scatter correction on a long-axial field-of-view PET scanner A hybrid [18F]fluoropivalate PET-multiparametric MRI to detect and characterise brain tumour metastases based on a permissive environment for monocarboxylate transport Robust whole-body PET image denoising using 3D diffusion models: evaluation across various scanners, tracers, and dose levels Optimizing MR-based attenuation correction in hybrid PET/MR using deep learning: validation with a flatbed insert and consistent patient positioning Unveiling the potential of copper-61 vs. gallium-68 for SSTR PET imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1