Investigating 2D/3D factors influencing surface urban heat islands in mountainous cities using explainable machine learning

IF 6 2区 工程技术 Q1 ENVIRONMENTAL SCIENCES Urban Climate Pub Date : 2025-01-30 DOI:10.1016/j.uclim.2025.102325
Zihao An, Yujia Ming, Yong Liu, Guangyu Zhang
{"title":"Investigating 2D/3D factors influencing surface urban heat islands in mountainous cities using explainable machine learning","authors":"Zihao An, Yujia Ming, Yong Liu, Guangyu Zhang","doi":"10.1016/j.uclim.2025.102325","DOIUrl":null,"url":null,"abstract":"Surface urban heat islands (SUHI) pose significant risks to human health and urban sustainability. While the impact of urban features on SUHI has been widely studied, research on the influence of 2D and 3D indicators in mountainous cities remains limited. This study introduces a set of 2D/3D indicators and explores their effects on SUHI in Chongqing, a mountainous city, using explainable machine learning methods that integrate XGBoost and Shapley values. The findings show that SUHI intensity in Chongqing increased from 1.5 °C in 2009 to 2.5 °C in 2019, with high-intensity areas expanding from 1.8 % to 6.5 %, shifting from urban cores to the suburbs. Changes in both 2D and 3D urban factors significantly influenced SUHI, with 2D factors showing a greater impact than 3D factors. Notably, the percentage of industrial land contributed 25.0 % to SUHI in 2009 and 24.6 % in 2019. Among the 3D factors, building density accounted for over 15 % of the SUHI variance in 2009. Most 2D/3D factors demonstrated nonlinear effects on SUHI, emphasizing the complexity of mountainous urban systems. Specifically, 3D factors such as mean building height and terrain slope reduced SUHI in urban cores when they exceeded certain thresholds (20 m and 5°, respectively). Local SHAP analysis further revealed that the spread of industrial land exacerbated SUHI, while high-rise buildings mitigated its effects in older urban cores through shading. These insights contribute to a better understanding of SUHI dynamics in mountainous cities and offer potential strategies for its mitigation.","PeriodicalId":48626,"journal":{"name":"Urban Climate","volume":"28 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urban Climate","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.uclim.2025.102325","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Surface urban heat islands (SUHI) pose significant risks to human health and urban sustainability. While the impact of urban features on SUHI has been widely studied, research on the influence of 2D and 3D indicators in mountainous cities remains limited. This study introduces a set of 2D/3D indicators and explores their effects on SUHI in Chongqing, a mountainous city, using explainable machine learning methods that integrate XGBoost and Shapley values. The findings show that SUHI intensity in Chongqing increased from 1.5 °C in 2009 to 2.5 °C in 2019, with high-intensity areas expanding from 1.8 % to 6.5 %, shifting from urban cores to the suburbs. Changes in both 2D and 3D urban factors significantly influenced SUHI, with 2D factors showing a greater impact than 3D factors. Notably, the percentage of industrial land contributed 25.0 % to SUHI in 2009 and 24.6 % in 2019. Among the 3D factors, building density accounted for over 15 % of the SUHI variance in 2009. Most 2D/3D factors demonstrated nonlinear effects on SUHI, emphasizing the complexity of mountainous urban systems. Specifically, 3D factors such as mean building height and terrain slope reduced SUHI in urban cores when they exceeded certain thresholds (20 m and 5°, respectively). Local SHAP analysis further revealed that the spread of industrial land exacerbated SUHI, while high-rise buildings mitigated its effects in older urban cores through shading. These insights contribute to a better understanding of SUHI dynamics in mountainous cities and offer potential strategies for its mitigation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Urban Climate
Urban Climate Social Sciences-Urban Studies
CiteScore
9.70
自引率
9.40%
发文量
286
期刊介绍: Urban Climate serves the scientific and decision making communities with the publication of research on theory, science and applications relevant to understanding urban climatic conditions and change in relation to their geography and to demographic, socioeconomic, institutional, technological and environmental dynamics and global change. Targeted towards both disciplinary and interdisciplinary audiences, this journal publishes original research papers, comprehensive review articles, book reviews, and short communications on topics including, but not limited to, the following: Urban meteorology and climate[...] Urban environmental pollution[...] Adaptation to global change[...] Urban economic and social issues[...] Research Approaches[...]
期刊最新文献
Maternal climate-related exposures and prolonged pregnancy: Findings from a statewide population-based cohort study in Western Australia Effects of bus station density on urban air pollution: An empirical analysis based on propensity score matching Urban forests mitigate extreme heat exposure in a vulnerable tropical city Spatial decision-making for urban flood vulnerability: A geomatics approach applied to Al-Ain City, UAE Investigating 2D/3D factors influencing surface urban heat islands in mountainous cities using explainable machine learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1