A semisynthetic, multicofactor artificial metalloenzyme retains independent site activity.

IF 2.7 3区 化学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Biological Inorganic Chemistry Pub Date : 2025-02-01 DOI:10.1007/s00775-025-02095-z
Ashlee E Wertz, Ilmari Rosenkampff, Philippe Ibouanga, Matthias Huber, Corinna R Hess, Olaf Rüdiger, Hannah S Shafaat
{"title":"A semisynthetic, multicofactor artificial metalloenzyme retains independent site activity.","authors":"Ashlee E Wertz, Ilmari Rosenkampff, Philippe Ibouanga, Matthias Huber, Corinna R Hess, Olaf Rüdiger, Hannah S Shafaat","doi":"10.1007/s00775-025-02095-z","DOIUrl":null,"url":null,"abstract":"<p><p>Native metalloenzymes are unparalleled in their ability to perform efficient small molecule activation reactions, converting simple substrates into complex products. Most of these natural systems possess multiple metallocofactors to facilitate electron transfer or cascade catalysis. While the field of artificial metalloenzymes is growing at a rapid rate, examples of artificial enzymes that leverage two distinct cofactors remain scarce. In this work, we describe a new class of artificial enzymes containing two different metallocofactors, incorporated through bioorthogonal strategies. Nickel-substituted rubredoxin (Ni<sup>Rd</sup>), which is a structural and functional mimic of [NiFe] hydrogenases, is used as a scaffold. Incorporation of a synthetic bimetallic inorganic complex based on a macrocyclic biquinazoline ligand (M<sup>MBQ</sup>) was accomplished using a novel chelating thioether linker. Neither the structure of the Ni<sup>Rd</sup> active site nor the M<sup>MBQ</sup> were altered upon attachment, and each site retained independent redox activity. Electrocatalysis was observed from each site, with the switchability of the system demonstrated through the use of catalytically inert metal centers. This M<sup>MBQ</sup>-Ni<sup>Rd</sup> platform offers a new avenue to create multicofactor artificial metalloenzymes in a robust system that can be easily tuned both through modifications to the protein scaffold and the synthetic moiety, with applications for redox catalysis and tandem reactivity.</p>","PeriodicalId":603,"journal":{"name":"Journal of Biological Inorganic Chemistry","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Inorganic Chemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1007/s00775-025-02095-z","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Native metalloenzymes are unparalleled in their ability to perform efficient small molecule activation reactions, converting simple substrates into complex products. Most of these natural systems possess multiple metallocofactors to facilitate electron transfer or cascade catalysis. While the field of artificial metalloenzymes is growing at a rapid rate, examples of artificial enzymes that leverage two distinct cofactors remain scarce. In this work, we describe a new class of artificial enzymes containing two different metallocofactors, incorporated through bioorthogonal strategies. Nickel-substituted rubredoxin (NiRd), which is a structural and functional mimic of [NiFe] hydrogenases, is used as a scaffold. Incorporation of a synthetic bimetallic inorganic complex based on a macrocyclic biquinazoline ligand (MMBQ) was accomplished using a novel chelating thioether linker. Neither the structure of the NiRd active site nor the MMBQ were altered upon attachment, and each site retained independent redox activity. Electrocatalysis was observed from each site, with the switchability of the system demonstrated through the use of catalytically inert metal centers. This MMBQ-NiRd platform offers a new avenue to create multicofactor artificial metalloenzymes in a robust system that can be easily tuned both through modifications to the protein scaffold and the synthetic moiety, with applications for redox catalysis and tandem reactivity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Biological Inorganic Chemistry
Journal of Biological Inorganic Chemistry 化学-生化与分子生物学
CiteScore
5.90
自引率
3.30%
发文量
49
审稿时长
3 months
期刊介绍: Biological inorganic chemistry is a growing field of science that embraces the principles of biology and inorganic chemistry and impacts other fields ranging from medicine to the environment. JBIC (Journal of Biological Inorganic Chemistry) seeks to promote this field internationally. The Journal is primarily concerned with advances in understanding the role of metal ions within a biological matrix—be it a protein, DNA/RNA, or a cell, as well as appropriate model studies. Manuscripts describing high-quality original research on the above topics in English are invited for submission to this Journal. The Journal publishes original articles, minireviews, and commentaries on debated issues.
期刊最新文献
The activation of the metal-containing regulatory protein NiaR from Thermotoga maritima by its effector, nicotinic acid. A semisynthetic, multicofactor artificial metalloenzyme retains independent site activity. Iron-sulfur clusters: the road to room temperature. Impacts of amino acid-linked platinum(II) complexes on DNA structure. Nitric oxide transfer between nominal Fe and Co biomimetics of the nitrile hydratase active site.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1