Retinal optical coherence tomography intensity spatial correlation features as new biomarkers for confirmed Alzheimer's disease.

IF 7.9 1区 医学 Q1 CLINICAL NEUROLOGY Alzheimer's Research & Therapy Pub Date : 2025-02-01 DOI:10.1186/s13195-025-01676-z
Zi Jin, Xinmin Wang, Ying Lang, Yufeng Song, Huangxiong Zhan, Wuge Shama, Yingying Shen, Guihua Zeng, Faying Zhou, Hongjian Gao, Shuling Ye, Yanjiang Wang, Fan Lu, Meixiao Shen
{"title":"Retinal optical coherence tomography intensity spatial correlation features as new biomarkers for confirmed Alzheimer's disease.","authors":"Zi Jin, Xinmin Wang, Ying Lang, Yufeng Song, Huangxiong Zhan, Wuge Shama, Yingying Shen, Guihua Zeng, Faying Zhou, Hongjian Gao, Shuling Ye, Yanjiang Wang, Fan Lu, Meixiao Shen","doi":"10.1186/s13195-025-01676-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The nature and severity of Alzheimer's disease (AD) pathologies in the retina and brain correspond. However, retinal biomarkers need to be validated in clinical cohorts with confirmed AD biomarkers and optical coherence tomography (OCT). The main objective of this study was to investigate whether retinal metrics measured by OCT aid in the early screening and brain pathology monitoring for confirmed AD.</p><p><strong>Methods: </strong>This was a case-control study. All participants underwent retinal OCT imaging, and neurological examinations, including amyloid-β (Aβ) positron emission tomography. Participants were subdivided into cognitively normal (CN), mild cognitive impairment (MCI), and AD-derived dementia (ADD). Except retinal thickness, we developed the grey level co-occurrence matrix algorithm to extract retinal OCT intensity spatial correlation features (OCT-ISCF), including angular second matrix (ASM), correlation (COR), and homogeneity (HOM), one-way analysis of variance was used to compare the differences in retinal parameters among the groups, and to analyze the correlation with brain Aβ plaques and cognitive scores. The repeatability and robustness of OCT-ISCF were evaluated using experimental and simulation methods.</p><p><strong>Results: </strong>This study enrolled 82 participants, subdivided into 20 CN, 22 MCI, and 40 ADD. Compared with the CN, the thickness of retinal nerve fiber layer and myoid and ellipsoid zone were significantly thinner (P < 0.05), and ASM, COR, and HOM in several retinal sublayers changed significantly in the ADD (P < 0.05). Notably, the MCI showed significant differences in ASM and COR in the outer segment of photoreceptor compared with the CN (P < 0.05). The changing pattern of OCT-ISCF with interclass correlation coefficients above 0.8 differed from that caused by speckle noise, and was affected by OCT image quality index. Moreover, the retinal OCT-ISCF were more strongly correlated with brain Aβ plaque burden and MoCA scores than retinal thickness. The accuracy using retinal OCT-ISCF (AUC = 0.935, 0.830) was better than that using retinal thickness (AUC = 0.795, 0.705) in detecting ADD and MCI.</p><p><strong>Conclusions: </strong>The study demonstrates that retinal OCT-ISCF enhance the association and detection efficacy of AD pathology compared to retinal thickness, suggesting retinal OCT-ISCF have the potential to be new biomarkers for AD.</p>","PeriodicalId":7516,"journal":{"name":"Alzheimer's Research & Therapy","volume":"17 1","pages":"33"},"PeriodicalIF":7.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11786474/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Alzheimer's Research & Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13195-025-01676-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The nature and severity of Alzheimer's disease (AD) pathologies in the retina and brain correspond. However, retinal biomarkers need to be validated in clinical cohorts with confirmed AD biomarkers and optical coherence tomography (OCT). The main objective of this study was to investigate whether retinal metrics measured by OCT aid in the early screening and brain pathology monitoring for confirmed AD.

Methods: This was a case-control study. All participants underwent retinal OCT imaging, and neurological examinations, including amyloid-β (Aβ) positron emission tomography. Participants were subdivided into cognitively normal (CN), mild cognitive impairment (MCI), and AD-derived dementia (ADD). Except retinal thickness, we developed the grey level co-occurrence matrix algorithm to extract retinal OCT intensity spatial correlation features (OCT-ISCF), including angular second matrix (ASM), correlation (COR), and homogeneity (HOM), one-way analysis of variance was used to compare the differences in retinal parameters among the groups, and to analyze the correlation with brain Aβ plaques and cognitive scores. The repeatability and robustness of OCT-ISCF were evaluated using experimental and simulation methods.

Results: This study enrolled 82 participants, subdivided into 20 CN, 22 MCI, and 40 ADD. Compared with the CN, the thickness of retinal nerve fiber layer and myoid and ellipsoid zone were significantly thinner (P < 0.05), and ASM, COR, and HOM in several retinal sublayers changed significantly in the ADD (P < 0.05). Notably, the MCI showed significant differences in ASM and COR in the outer segment of photoreceptor compared with the CN (P < 0.05). The changing pattern of OCT-ISCF with interclass correlation coefficients above 0.8 differed from that caused by speckle noise, and was affected by OCT image quality index. Moreover, the retinal OCT-ISCF were more strongly correlated with brain Aβ plaque burden and MoCA scores than retinal thickness. The accuracy using retinal OCT-ISCF (AUC = 0.935, 0.830) was better than that using retinal thickness (AUC = 0.795, 0.705) in detecting ADD and MCI.

Conclusions: The study demonstrates that retinal OCT-ISCF enhance the association and detection efficacy of AD pathology compared to retinal thickness, suggesting retinal OCT-ISCF have the potential to be new biomarkers for AD.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Alzheimer's Research & Therapy
Alzheimer's Research & Therapy 医学-神经病学
CiteScore
13.10
自引率
3.30%
发文量
172
审稿时长
>12 weeks
期刊介绍: Alzheimer's Research & Therapy is an international peer-reviewed journal that focuses on translational research into Alzheimer's disease and other neurodegenerative diseases. It publishes open-access basic research, clinical trials, drug discovery and development studies, and epidemiologic studies. The journal also includes reviews, viewpoints, commentaries, debates, and reports. All articles published in Alzheimer's Research & Therapy are included in several reputable databases such as CAS, Current contents, DOAJ, Embase, Journal Citation Reports/Science Edition, MEDLINE, PubMed, PubMed Central, Science Citation Index Expanded (Web of Science) and Scopus.
期刊最新文献
β-synuclein in cerebrospinal fluid as a potential biomarker for distinguishing human prion diseases from Alzheimer's and Parkinson's disease. Heterogeneous clinical phenotypes of sporadic early-onset Alzheimer's disease: a neuropsychological data-driven approach. A systematic review and meta-analysis of the impact of transcranial direct current stimulation on cognitive function in older adults with cognitive impairments: the influence of dosage parameters. Delta-opioid receptor signaling alleviates neuropathology and cognitive impairment in the mouse model of Alzheimer's disease by regulating microglia homeostasis and inhibiting HMGB1 pathway. Effects of intensive lifestyle changes on the progression of mild cognitive impairment or early dementia due to Alzheimer's disease: the need for rigor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1