Accurate assembly of full-length consensus for viral quasispecies.

IF 2.9 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS BMC Bioinformatics Pub Date : 2025-02-01 DOI:10.1186/s12859-025-06045-z
Jia Tian, Ziyu Gao, Minghao Li, Ergude Bao, Jin Zhao
{"title":"Accurate assembly of full-length consensus for viral quasispecies.","authors":"Jia Tian, Ziyu Gao, Minghao Li, Ergude Bao, Jin Zhao","doi":"10.1186/s12859-025-06045-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Viruses can inhabit their hosts in the form of an ensemble of various mutant strains. Reconstructing a robust consensus representation for these diverse mutant strains is essential for recognizing the genetic variations among strains and delving into aspects like virulence, pathogenesis, and selecting therapies. Virus genomes are typically small, often composed of only a few thousand to several hundred thousand nucleotides. While constructing a high-quality consensus of virus strains might seem feasible, most current assemblers only generated fragmented contigs. It's important to emphasize the significance of assembling a single full-length consensus contig, as it's vital for identifying genetic diversity and estimating strain abundance accurately.</p><p><strong>Results: </strong>In this paper, we developed FC-Virus, a de novo genome assembly strategy specifically targeting highly diverse viral populations. FC-Virus first identifies the k-mers that are common across most viral strains, and then uses these k-mers as a backbone to build a full-length consensus sequence covering the entire genome. We benchmark FC-Virus against state-of-the-art genome assemblers.</p><p><strong>Conclusion: </strong>Experimental results confirm that FC-Virus can construct a single, accurate full-length consensus, whereas other assemblers only manage to produce fragmented contigs. FC-Virus is freely available at https://github.com/qdu-bioinfo/FC-Virus.git .</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"26 1","pages":"36"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11787740/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-025-06045-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Viruses can inhabit their hosts in the form of an ensemble of various mutant strains. Reconstructing a robust consensus representation for these diverse mutant strains is essential for recognizing the genetic variations among strains and delving into aspects like virulence, pathogenesis, and selecting therapies. Virus genomes are typically small, often composed of only a few thousand to several hundred thousand nucleotides. While constructing a high-quality consensus of virus strains might seem feasible, most current assemblers only generated fragmented contigs. It's important to emphasize the significance of assembling a single full-length consensus contig, as it's vital for identifying genetic diversity and estimating strain abundance accurately.

Results: In this paper, we developed FC-Virus, a de novo genome assembly strategy specifically targeting highly diverse viral populations. FC-Virus first identifies the k-mers that are common across most viral strains, and then uses these k-mers as a backbone to build a full-length consensus sequence covering the entire genome. We benchmark FC-Virus against state-of-the-art genome assemblers.

Conclusion: Experimental results confirm that FC-Virus can construct a single, accurate full-length consensus, whereas other assemblers only manage to produce fragmented contigs. FC-Virus is freely available at https://github.com/qdu-bioinfo/FC-Virus.git .

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Bioinformatics
BMC Bioinformatics 生物-生化研究方法
CiteScore
5.70
自引率
3.30%
发文量
506
审稿时长
4.3 months
期刊介绍: BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology. BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
期刊最新文献
BioLake: an RNA expression analysis framework for prostate cancer biomarker powered by data lakehouse. CellMAP: an open-source software tool to batch-process cell topography and stiffness maps collected with an atomic force microscope. Accurate assembly of full-length consensus for viral quasispecies. Flexible analysis of spatial transcriptomics data (FAST): a deconvolution approach. Biomedical named entity recognition using improved green anaconda-assisted Bi-GRU-based hierarchical ResNet model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1