Towards unbiased skin cancer classification using deep feature fusion.

IF 3.3 3区 医学 Q2 MEDICAL INFORMATICS BMC Medical Informatics and Decision Making Pub Date : 2025-01-31 DOI:10.1186/s12911-025-02889-w
Ali Atshan Abdulredah, Mohammed A Fadhel, Laith Alzubaidi, Ye Duan, Monji Kherallah, Faiza Charfi
{"title":"Towards unbiased skin cancer classification using deep feature fusion.","authors":"Ali Atshan Abdulredah, Mohammed A Fadhel, Laith Alzubaidi, Ye Duan, Monji Kherallah, Faiza Charfi","doi":"10.1186/s12911-025-02889-w","DOIUrl":null,"url":null,"abstract":"<p><p>This paper introduces SkinWiseNet (SWNet), a deep convolutional neural network designed for the detection and automatic classification of potentially malignant skin cancer conditions. SWNet optimizes feature extraction through multiple pathways, emphasizing network width augmentation to enhance efficiency. The proposed model addresses potential biases associated with skin conditions, particularly in individuals with darker skin tones or excessive hair, by incorporating feature fusion to assimilate insights from diverse datasets. Extensive experiments were conducted using publicly accessible datasets to evaluate SWNet's effectiveness.This study utilized four datasets-Mnist-HAM10000, ISIC2019, ISIC2020, and Melanoma Skin Cancer-comprising skin cancer images categorized into benign and malignant classes. Explainable Artificial Intelligence (XAI) techniques, specifically Grad-CAM, were employed to enhance the interpretability of the model's decisions. Comparative analysis was performed with three pre-existing deep learning networks-EfficientNet, MobileNet, and Darknet. The results demonstrate SWNet's superiority, achieving an accuracy of 99.86% and an F1 score of 99.95%, underscoring its efficacy in gradient propagation and feature capture across various levels. This research highlights the significant potential of SWNet in advancing skin cancer detection and classification, providing a robust tool for accurate and early diagnosis. The integration of feature fusion enhances accuracy and mitigates biases associated with hair and skin tones. The outcomes of this study contribute to improved patient outcomes and healthcare practices, showcasing SWNet's exceptional capabilities in skin cancer detection and classification.</p>","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":"25 1","pages":"48"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11786435/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Informatics and Decision Making","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12911-025-02889-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces SkinWiseNet (SWNet), a deep convolutional neural network designed for the detection and automatic classification of potentially malignant skin cancer conditions. SWNet optimizes feature extraction through multiple pathways, emphasizing network width augmentation to enhance efficiency. The proposed model addresses potential biases associated with skin conditions, particularly in individuals with darker skin tones or excessive hair, by incorporating feature fusion to assimilate insights from diverse datasets. Extensive experiments were conducted using publicly accessible datasets to evaluate SWNet's effectiveness.This study utilized four datasets-Mnist-HAM10000, ISIC2019, ISIC2020, and Melanoma Skin Cancer-comprising skin cancer images categorized into benign and malignant classes. Explainable Artificial Intelligence (XAI) techniques, specifically Grad-CAM, were employed to enhance the interpretability of the model's decisions. Comparative analysis was performed with three pre-existing deep learning networks-EfficientNet, MobileNet, and Darknet. The results demonstrate SWNet's superiority, achieving an accuracy of 99.86% and an F1 score of 99.95%, underscoring its efficacy in gradient propagation and feature capture across various levels. This research highlights the significant potential of SWNet in advancing skin cancer detection and classification, providing a robust tool for accurate and early diagnosis. The integration of feature fusion enhances accuracy and mitigates biases associated with hair and skin tones. The outcomes of this study contribute to improved patient outcomes and healthcare practices, showcasing SWNet's exceptional capabilities in skin cancer detection and classification.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
5.70%
发文量
297
审稿时长
1 months
期刊介绍: BMC Medical Informatics and Decision Making is an open access journal publishing original peer-reviewed research articles in relation to the design, development, implementation, use, and evaluation of health information technologies and decision-making for human health.
期刊最新文献
Exploration of the optimal deep learning model for english-Japanese machine translation of medical device adverse event terminology. Causal machine learning models for predicting low birth weight in midwife-led continuity care intervention in North Shoa Zone, Ethiopia. Improving stroke risk prediction by integrating XGBoost, optimized principal component analysis, and explainable artificial intelligence. Tough choices: the experience of family members of critically ill patients participating in ECMO treatment decision-making: a descriptive qualitative study. Patients' and plastic surgeons' experiences with an online patient decision aid for breast reconstruction: considerations for nationwide implementation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1