Yasara Kavindi Kodagoda, H A C R Hanchapola, D C G Rodrigo, Chaehyun Lim, D S Liyanage, W K M Omeka, G A N P Ganepola, M A H Dilshan, Jeongeun Kim, Ji Hun Lee, Taehyug Jeong, Qiang Wan, Gaeun Kim, Jehee Lee
{"title":"Expression Profiling and Functional Role of Cyclooxygenase-2 in the Immune and Inflammatory Responses of Red-spotted Grouper (Epinephelus akaara).","authors":"Yasara Kavindi Kodagoda, H A C R Hanchapola, D C G Rodrigo, Chaehyun Lim, D S Liyanage, W K M Omeka, G A N P Ganepola, M A H Dilshan, Jeongeun Kim, Ji Hun Lee, Taehyug Jeong, Qiang Wan, Gaeun Kim, Jehee Lee","doi":"10.1016/j.fsi.2025.110158","DOIUrl":null,"url":null,"abstract":"<p><p>Cyclooxygenase-2 (Cox-2) is a well-studied enzyme and a significant medicinal target associated with various inflammatory disorders. However, its role in pathogen-induced inflammatory responses in fish remains poorly understood. This study characterized the structural and functional properties of a Cox-2 homolog from red-spotted grouper (Epinephelus akaara) (EaCox-2). The three-dimensional structure of EaCox-2 revealed a homodimer with two functional domains: a catalytic domain with two active sites and a membrane-binding domain. EaCox-2 transcripts were ubiquitously expressed in all tested tissues of E. akaara, with the highest expression in the gills, followed by the spleen. Immune stimulation with polyinosinic:polycytidylic acid (poly I:C), lipopolysaccharides (LPS), and nervous necrosis virus (NNV) led to significant upregulation in EaCox-2 transcripts 12 and 24 h post-injection in both gill and spleen tissues. EaCox-2 overexpression in murine macrophages triggered a pro-inflammatory response characterized by M1 macrophage polarization, upregulation of pro-inflammatory mediators such as TNF-α, IL-1β, and IL-6, and iNOS enzyme, enhanced production of reactive nitric oxide (NO), and mitochondrial depolarization. These findings highlight the crucial role of EaCox-2 in regulating immune and inflammatory responses in E. akaara, providing valuable insights into the molecular mechanisms underlying teleost immunity.</p>","PeriodicalId":12127,"journal":{"name":"Fish & shellfish immunology","volume":" ","pages":"110158"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fish & shellfish immunology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.fsi.2025.110158","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0
Abstract
Cyclooxygenase-2 (Cox-2) is a well-studied enzyme and a significant medicinal target associated with various inflammatory disorders. However, its role in pathogen-induced inflammatory responses in fish remains poorly understood. This study characterized the structural and functional properties of a Cox-2 homolog from red-spotted grouper (Epinephelus akaara) (EaCox-2). The three-dimensional structure of EaCox-2 revealed a homodimer with two functional domains: a catalytic domain with two active sites and a membrane-binding domain. EaCox-2 transcripts were ubiquitously expressed in all tested tissues of E. akaara, with the highest expression in the gills, followed by the spleen. Immune stimulation with polyinosinic:polycytidylic acid (poly I:C), lipopolysaccharides (LPS), and nervous necrosis virus (NNV) led to significant upregulation in EaCox-2 transcripts 12 and 24 h post-injection in both gill and spleen tissues. EaCox-2 overexpression in murine macrophages triggered a pro-inflammatory response characterized by M1 macrophage polarization, upregulation of pro-inflammatory mediators such as TNF-α, IL-1β, and IL-6, and iNOS enzyme, enhanced production of reactive nitric oxide (NO), and mitochondrial depolarization. These findings highlight the crucial role of EaCox-2 in regulating immune and inflammatory responses in E. akaara, providing valuable insights into the molecular mechanisms underlying teleost immunity.
期刊介绍:
Fish and Shellfish Immunology rapidly publishes high-quality, peer-refereed contributions in the expanding fields of fish and shellfish immunology. It presents studies on the basic mechanisms of both the specific and non-specific defense systems, the cells, tissues, and humoral factors involved, their dependence on environmental and intrinsic factors, response to pathogens, response to vaccination, and applied studies on the development of specific vaccines for use in the aquaculture industry.