Yize Jiang , Yi Wei , Yuxuan Liu , Jiaxu Yang , Kexin Zhou , Haisheng Yang
{"title":"Bone mineral density surrounding the screw thread predicts the risk of pedicle screw loosening","authors":"Yize Jiang , Yi Wei , Yuxuan Liu , Jiaxu Yang , Kexin Zhou , Haisheng Yang","doi":"10.1016/j.jbiomech.2025.112542","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Screw loosening remains a serious complication for patients undergoing pedicle screw fixation surgeries. An accurate risk prediction is significant for prevention of screw loosening through preoperative planning. In this study, we proposed a novel index, namely the bone mineral density surrounding the screw thread (thread BMD), and tested its predictability in screw loosening.</div></div><div><h3>Methods</h3><div>86 screws (18 loosening and 68 non-loosening) from L3–L5 of 20 patients who experienced pedicle screw loosening were analyzed. The preoperative and postoperative quantitative CT scans of the same vertebra were spatially registered and a helix-based approach was developed to extract the thread BMD. BMDs of the vertebral body, the pedicle and the screw trajectory were also measured from the preoperative CT scans. Finite element analysis was conducted to determine pullout strength and tissue failure around the screw. Receiver operating characteristic (ROC) curve analysis was used to assess the performances of all BMD indices and pullout strength in predicting screw loosening. Linear regression was used to examine correlations between different BMD indices and screw pullout strength.</div></div><div><h3>Results</h3><div>The thread BMD had the greatest value of area under the curve (AUC = 0.73, p = 0.004) compared to vertebral BMD (AUC = 0.51, p = 0.923), pedicle BMD (AUC = 0.56, p = 0.474) and trajectory BMD (AUC = 0.67, p = 0.020). Also, the thread BMD showed a stronger correlation with the pullout strength (r = 0.83, p < 0.001) than vertebral BMD (r = 0.59, p < 0.001), pedicle BMD (r = 0.65, p < 0.001) and trajectory BMD (r = 0.60, p < 0.001).</div></div><div><h3>Conclusions</h3><div>We developed a novel approach to measure a newly-defined <em>thread BMD</em>, which indicates superior capacities over other BMD indices in predicting pedicle screw loosening.</div></div>","PeriodicalId":15168,"journal":{"name":"Journal of biomechanics","volume":"181 ","pages":"Article 112542"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021929025000533","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Screw loosening remains a serious complication for patients undergoing pedicle screw fixation surgeries. An accurate risk prediction is significant for prevention of screw loosening through preoperative planning. In this study, we proposed a novel index, namely the bone mineral density surrounding the screw thread (thread BMD), and tested its predictability in screw loosening.
Methods
86 screws (18 loosening and 68 non-loosening) from L3–L5 of 20 patients who experienced pedicle screw loosening were analyzed. The preoperative and postoperative quantitative CT scans of the same vertebra were spatially registered and a helix-based approach was developed to extract the thread BMD. BMDs of the vertebral body, the pedicle and the screw trajectory were also measured from the preoperative CT scans. Finite element analysis was conducted to determine pullout strength and tissue failure around the screw. Receiver operating characteristic (ROC) curve analysis was used to assess the performances of all BMD indices and pullout strength in predicting screw loosening. Linear regression was used to examine correlations between different BMD indices and screw pullout strength.
Results
The thread BMD had the greatest value of area under the curve (AUC = 0.73, p = 0.004) compared to vertebral BMD (AUC = 0.51, p = 0.923), pedicle BMD (AUC = 0.56, p = 0.474) and trajectory BMD (AUC = 0.67, p = 0.020). Also, the thread BMD showed a stronger correlation with the pullout strength (r = 0.83, p < 0.001) than vertebral BMD (r = 0.59, p < 0.001), pedicle BMD (r = 0.65, p < 0.001) and trajectory BMD (r = 0.60, p < 0.001).
Conclusions
We developed a novel approach to measure a newly-defined thread BMD, which indicates superior capacities over other BMD indices in predicting pedicle screw loosening.
期刊介绍:
The Journal of Biomechanics publishes reports of original and substantial findings using the principles of mechanics to explore biological problems. Analytical, as well as experimental papers may be submitted, and the journal accepts original articles, surveys and perspective articles (usually by Editorial invitation only), book reviews and letters to the Editor. The criteria for acceptance of manuscripts include excellence, novelty, significance, clarity, conciseness and interest to the readership.
Papers published in the journal may cover a wide range of topics in biomechanics, including, but not limited to:
-Fundamental Topics - Biomechanics of the musculoskeletal, cardiovascular, and respiratory systems, mechanics of hard and soft tissues, biofluid mechanics, mechanics of prostheses and implant-tissue interfaces, mechanics of cells.
-Cardiovascular and Respiratory Biomechanics - Mechanics of blood-flow, air-flow, mechanics of the soft tissues, flow-tissue or flow-prosthesis interactions.
-Cell Biomechanics - Biomechanic analyses of cells, membranes and sub-cellular structures; the relationship of the mechanical environment to cell and tissue response.
-Dental Biomechanics - Design and analysis of dental tissues and prostheses, mechanics of chewing.
-Functional Tissue Engineering - The role of biomechanical factors in engineered tissue replacements and regenerative medicine.
-Injury Biomechanics - Mechanics of impact and trauma, dynamics of man-machine interaction.
-Molecular Biomechanics - Mechanical analyses of biomolecules.
-Orthopedic Biomechanics - Mechanics of fracture and fracture fixation, mechanics of implants and implant fixation, mechanics of bones and joints, wear of natural and artificial joints.
-Rehabilitation Biomechanics - Analyses of gait, mechanics of prosthetics and orthotics.
-Sports Biomechanics - Mechanical analyses of sports performance.