Lu Yuan, Daohuan Kang, Liping Teng, Nan Chen, Jiao Zhan, Rui Yu, Yong Wang, Bin Lu
{"title":"Biosafety and Efficacy Studies of Colchicine-Encapsulated Liposomes for Ocular Inflammatory Diseases.","authors":"Lu Yuan, Daohuan Kang, Liping Teng, Nan Chen, Jiao Zhan, Rui Yu, Yong Wang, Bin Lu","doi":"10.1002/jbm.b.35540","DOIUrl":null,"url":null,"abstract":"<p><p>Inflammation is a critical component in the progression of various ocular diseases, such as age-related macular degeneration, diabetic retinopathy, and uveitis, leading to significant vision loss. Colchicine has been used for treating gout with its anti-inflammatory effect. However, free colchicine demonstrated cytotoxicity to ocular cells and cannot directly be used for eye disease. Thus, this study introduces, for the first time, the development and use of colchicine-encapsulated liposomes as a novel therapeutic approach for managing inflammation-driven ocular conditions. The encapsulation of colchicine within liposomes represents a significant innovation, aimed at enhancing biocompatibility and therapeutic efficacy while minimizing cytotoxic effects associated with free colchicine. Our research synthesized colchicine-loaded liposomes and assessed their therapeutic impact on human monocytes, macrophages, and retinal pigment epithelium (RPE) cells in an inflammatory environment. The findings reveal a groundbreaking improvement in treatment strategies, with a substantial reduction in TNF-alpha-induced reactive oxygen species (ROS) and nitric oxide (NO) production in RPE cells. Moreover, the colchicine-loaded liposomes significantly inhibited the proliferation and ROS production in activated monocytes and macrophages and effectively decreased interleukin (IL)-1β and IL-6 secretion, highlighting their strong anti-inflammatory properties and showed slightly better suppression of these two cytokines than dexamethasone-liposomes.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"113 2","pages":"e35540"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part B, Applied biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/jbm.b.35540","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Inflammation is a critical component in the progression of various ocular diseases, such as age-related macular degeneration, diabetic retinopathy, and uveitis, leading to significant vision loss. Colchicine has been used for treating gout with its anti-inflammatory effect. However, free colchicine demonstrated cytotoxicity to ocular cells and cannot directly be used for eye disease. Thus, this study introduces, for the first time, the development and use of colchicine-encapsulated liposomes as a novel therapeutic approach for managing inflammation-driven ocular conditions. The encapsulation of colchicine within liposomes represents a significant innovation, aimed at enhancing biocompatibility and therapeutic efficacy while minimizing cytotoxic effects associated with free colchicine. Our research synthesized colchicine-loaded liposomes and assessed their therapeutic impact on human monocytes, macrophages, and retinal pigment epithelium (RPE) cells in an inflammatory environment. The findings reveal a groundbreaking improvement in treatment strategies, with a substantial reduction in TNF-alpha-induced reactive oxygen species (ROS) and nitric oxide (NO) production in RPE cells. Moreover, the colchicine-loaded liposomes significantly inhibited the proliferation and ROS production in activated monocytes and macrophages and effectively decreased interleukin (IL)-1β and IL-6 secretion, highlighting their strong anti-inflammatory properties and showed slightly better suppression of these two cytokines than dexamethasone-liposomes.
期刊介绍:
Journal of Biomedical Materials Research – Part B: Applied Biomaterials is a highly interdisciplinary peer-reviewed journal serving the needs of biomaterials professionals who design, develop, produce and apply biomaterials and medical devices. It has the common focus of biomaterials applied to the human body and covers all disciplines where medical devices are used. Papers are published on biomaterials related to medical device development and manufacture, degradation in the body, nano- and biomimetic- biomaterials interactions, mechanics of biomaterials, implant retrieval and analysis, tissue-biomaterial surface interactions, wound healing, infection, drug delivery, standards and regulation of devices, animal and pre-clinical studies of biomaterials and medical devices, and tissue-biopolymer-material combination products. Manuscripts are published in one of six formats:
• original research reports
• short research and development reports
• scientific reviews
• current concepts articles
• special reports
• editorials
Journal of Biomedical Materials Research – Part B: Applied Biomaterials is an official journal of the Society for Biomaterials, Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Manuscripts from all countries are invited but must be in English. Authors are not required to be members of the affiliated Societies, but members of these societies are encouraged to submit their work to the journal for consideration.