Francesca Rose Dino, Peter Scott Pressman, Kevin Bretonnel Cohen, Veljko Dubljevic, William Jarrold, Peter W Foltz, Matt DeCamp, Mohammad H Mahoor, Lawrence E Hunter
{"title":"Ethics in digital phenotyping: considerations regarding Alzheimer's disease, speech and artificial intelligence.","authors":"Francesca Rose Dino, Peter Scott Pressman, Kevin Bretonnel Cohen, Veljko Dubljevic, William Jarrold, Peter W Foltz, Matt DeCamp, Mohammad H Mahoor, Lawrence E Hunter","doi":"10.1136/jme-2024-110252","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence (AI)-based digital phenotyping, including computational speech analysis, increasingly allows for the collection of diagnostically relevant information from an ever-expanding number of sources. Such information usually assesses human behaviour, which is a consequence of the nervous system, and so digital phenotyping may be particularly helpful in diagnosing neurological illnesses such as Alzheimer's disease. As illustrated by the use of computational speech analysis of Alzheimer's disease, however, neurological illness also introduces ethical considerations beyond commonly recognised concerns regarding machine learning and data collection in everyday environments. Individuals' decision-making capacity cannot be assumed. Understanding of analytical results will likely be limited even as the personal significance of those results is both highly sensitive and personal. In a traditional clinical evaluation, there is an opportunity to ensure that information is relayed in a way that is highly customised to the individual's ability to understand results and make decisions, and privacy is closely protected. Can any such assurance be offered as digital phenotyping technology continues to advance? AI-supported digital phenotyping offers great promise in neurocognitive disorders such as Alzheimer's disease, but it also poses ethical challenges. We outline some of these risks as well as strategies for risk mitigation.</p>","PeriodicalId":16317,"journal":{"name":"Journal of Medical Ethics","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Ethics","FirstCategoryId":"98","ListUrlMain":"https://doi.org/10.1136/jme-2024-110252","RegionNum":2,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ETHICS","Score":null,"Total":0}
引用次数: 0
Abstract
Artificial intelligence (AI)-based digital phenotyping, including computational speech analysis, increasingly allows for the collection of diagnostically relevant information from an ever-expanding number of sources. Such information usually assesses human behaviour, which is a consequence of the nervous system, and so digital phenotyping may be particularly helpful in diagnosing neurological illnesses such as Alzheimer's disease. As illustrated by the use of computational speech analysis of Alzheimer's disease, however, neurological illness also introduces ethical considerations beyond commonly recognised concerns regarding machine learning and data collection in everyday environments. Individuals' decision-making capacity cannot be assumed. Understanding of analytical results will likely be limited even as the personal significance of those results is both highly sensitive and personal. In a traditional clinical evaluation, there is an opportunity to ensure that information is relayed in a way that is highly customised to the individual's ability to understand results and make decisions, and privacy is closely protected. Can any such assurance be offered as digital phenotyping technology continues to advance? AI-supported digital phenotyping offers great promise in neurocognitive disorders such as Alzheimer's disease, but it also poses ethical challenges. We outline some of these risks as well as strategies for risk mitigation.
期刊介绍:
Journal of Medical Ethics is a leading international journal that reflects the whole field of medical ethics. The journal seeks to promote ethical reflection and conduct in scientific research and medical practice. It features articles on various ethical aspects of health care relevant to health care professionals, members of clinical ethics committees, medical ethics professionals, researchers and bioscientists, policy makers and patients.
Subscribers to the Journal of Medical Ethics also receive Medical Humanities journal at no extra cost.
JME is the official journal of the Institute of Medical Ethics.