Marina Reva , Maria Mendes , João José Sousa , Alberto Pais , Carla Vitorino
{"title":"boron neutron capture therapy for glioblastoma: The delivery dilemma","authors":"Marina Reva , Maria Mendes , João José Sousa , Alberto Pais , Carla Vitorino","doi":"10.1016/j.lfs.2025.123435","DOIUrl":null,"url":null,"abstract":"<div><div>This review delves into boron neutron capture therapy (BNCT), a targeted alpha-particle radiotherapy that holds promise in oncology and has the potential to address concerns of efficacy and safety associated to conventional cancer therapies. Information was gathered from literature searches that used the keywords “boron neutron capture therapy,” “clinical application,” “nanotechnology,” and “liposome” so as to analyze the clinical applications of BNCT in cancer over time. The methodology includes a thorough literature review, analysis of preclinical studies, and clinical trials to assess the viability of BNCT in treating glioblastoma (GB), as an example of a hard-to-treat cancer type.</div><div>Firstly, the fundamental principles of BNCT are outlined, followed by an extensive exploration of the respective application in oncology, particularly emphasizing its synergy with nanotechnology advancements. A key focus is placed on evaluating whether third-generation nanoparticles show superior efficacy compared to conventional boron-delivering systems used in BNCT. Additionally, attention is drawn to the critical analysis of safety concerns surrounding nanotechnology, which are crucial for clinical translation. Noteworthy is the clinical application of liposomes (LPs) in GB, highlighting their potential and limitations in clinical settings.</div><div>Overall, the collected evidence sheds light on the high potential of BNCT in the research and development of new treatment (and diagnosis) modalities for GB and other cancer types.</div></div>","PeriodicalId":18122,"journal":{"name":"Life sciences","volume":"364 ","pages":"Article 123435"},"PeriodicalIF":5.2000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024320525000682","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
This review delves into boron neutron capture therapy (BNCT), a targeted alpha-particle radiotherapy that holds promise in oncology and has the potential to address concerns of efficacy and safety associated to conventional cancer therapies. Information was gathered from literature searches that used the keywords “boron neutron capture therapy,” “clinical application,” “nanotechnology,” and “liposome” so as to analyze the clinical applications of BNCT in cancer over time. The methodology includes a thorough literature review, analysis of preclinical studies, and clinical trials to assess the viability of BNCT in treating glioblastoma (GB), as an example of a hard-to-treat cancer type.
Firstly, the fundamental principles of BNCT are outlined, followed by an extensive exploration of the respective application in oncology, particularly emphasizing its synergy with nanotechnology advancements. A key focus is placed on evaluating whether third-generation nanoparticles show superior efficacy compared to conventional boron-delivering systems used in BNCT. Additionally, attention is drawn to the critical analysis of safety concerns surrounding nanotechnology, which are crucial for clinical translation. Noteworthy is the clinical application of liposomes (LPs) in GB, highlighting their potential and limitations in clinical settings.
Overall, the collected evidence sheds light on the high potential of BNCT in the research and development of new treatment (and diagnosis) modalities for GB and other cancer types.
期刊介绍:
Life Sciences is an international journal publishing articles that emphasize the molecular, cellular, and functional basis of therapy. The journal emphasizes the understanding of mechanism that is relevant to all aspects of human disease and translation to patients. All articles are rigorously reviewed.
The Journal favors publication of full-length papers where modern scientific technologies are used to explain molecular, cellular and physiological mechanisms. Articles that merely report observations are rarely accepted. Recommendations from the Declaration of Helsinki or NIH guidelines for care and use of laboratory animals must be adhered to. Articles should be written at a level accessible to readers who are non-specialists in the topic of the article themselves, but who are interested in the research. The Journal welcomes reviews on topics of wide interest to investigators in the life sciences. We particularly encourage submission of brief, focused reviews containing high-quality artwork and require the use of mechanistic summary diagrams.