PAX2 induces endometrial cancer by inhibiting mitochondrial function via the CD133-AKT1 pathway.

IF 3.5 2区 生物学 Q3 CELL BIOLOGY Molecular and Cellular Biochemistry Pub Date : 2025-02-01 DOI:10.1007/s11010-025-05216-z
Fu Hua, YunLang Cai
{"title":"PAX2 induces endometrial cancer by inhibiting mitochondrial function via the CD133-AKT1 pathway.","authors":"Fu Hua, YunLang Cai","doi":"10.1007/s11010-025-05216-z","DOIUrl":null,"url":null,"abstract":"<p><p>Endometrial cancer (EC) is a malignancy of the endometrial epithelium. The prevalence and mortality rates associated with the disease are on the rise globally. A total of 20 cases of type I EC tissues were collected for transcriptomic sequencing, our findings indicate that PAX2 is highly expressed in EC tissues and is closely related to the pathogenesis of EC. PAX2 is a member of the paired homeobox domain family and has been linked to the development of a number of different tumours. In normal endometrial tissue, PAX2 is methylated; however, in EC, it is demethylated. Nevertheless, few studies have focused on its role in EC. A protein-protein interaction (PPI) analysis revealed a regulatory relationship between PAX2 and CD133, which in turn affects the activity of AKT1. CD133 is a well-known marker of tumor stem cells and is involved in tumor initiation, metastasis, recurrence, and drug resistance; AKT1 promotes cell survival by inhibiting apoptosis and is considered a major promoter of many types of cancer. Nevertheless, further investigation is required to ascertain whether PAX2 affects the progression of EC by regulating the CD133-AKT1 pathway. The present study demonstrated that PAX2 promoted cell proliferation, migration, invasion and adhesion, and inhibited apoptosis. Its mechanism of action was found to be the inhibition of mitochondrial oxidative phosphorylation, promotion of glycolysis, increase in mitochondrial copy number, and increase in the levels of reactive oxygen species (ROS) and hexokinase, as well as the concentration of mitochondrial calcium ions. This was achieved through the promotion of CD133 expression and the phosphorylation of AKT1. In conjunction with the aforementioned regulatory pathways, the progression of EC is facilitated.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11010-025-05216-z","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Endometrial cancer (EC) is a malignancy of the endometrial epithelium. The prevalence and mortality rates associated with the disease are on the rise globally. A total of 20 cases of type I EC tissues were collected for transcriptomic sequencing, our findings indicate that PAX2 is highly expressed in EC tissues and is closely related to the pathogenesis of EC. PAX2 is a member of the paired homeobox domain family and has been linked to the development of a number of different tumours. In normal endometrial tissue, PAX2 is methylated; however, in EC, it is demethylated. Nevertheless, few studies have focused on its role in EC. A protein-protein interaction (PPI) analysis revealed a regulatory relationship between PAX2 and CD133, which in turn affects the activity of AKT1. CD133 is a well-known marker of tumor stem cells and is involved in tumor initiation, metastasis, recurrence, and drug resistance; AKT1 promotes cell survival by inhibiting apoptosis and is considered a major promoter of many types of cancer. Nevertheless, further investigation is required to ascertain whether PAX2 affects the progression of EC by regulating the CD133-AKT1 pathway. The present study demonstrated that PAX2 promoted cell proliferation, migration, invasion and adhesion, and inhibited apoptosis. Its mechanism of action was found to be the inhibition of mitochondrial oxidative phosphorylation, promotion of glycolysis, increase in mitochondrial copy number, and increase in the levels of reactive oxygen species (ROS) and hexokinase, as well as the concentration of mitochondrial calcium ions. This was achieved through the promotion of CD133 expression and the phosphorylation of AKT1. In conjunction with the aforementioned regulatory pathways, the progression of EC is facilitated.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular and Cellular Biochemistry
Molecular and Cellular Biochemistry 生物-细胞生物学
CiteScore
8.30
自引率
2.30%
发文量
293
审稿时长
1.7 months
期刊介绍: Molecular and Cellular Biochemistry: An International Journal for Chemical Biology in Health and Disease publishes original research papers and short communications in all areas of the biochemical sciences, emphasizing novel findings relevant to the biochemical basis of cellular function and disease processes, as well as the mechanics of action of hormones and chemical agents. Coverage includes membrane transport, receptor mechanism, immune response, secretory processes, and cytoskeletal function, as well as biochemical structure-function relationships in the cell. In addition to the reports of original research, the journal publishes state of the art reviews. Specific subjects covered by Molecular and Cellular Biochemistry include cellular metabolism, cellular pathophysiology, enzymology, ion transport, lipid biochemistry, membrane biochemistry, molecular biology, nuclear structure and function, and protein chemistry.
期刊最新文献
Autophagy and the peroxisome proliferator-activated receptor signaling pathway: A molecular ballet in lipid metabolism and homeostasis. PAX2 induces endometrial cancer by inhibiting mitochondrial function via the CD133-AKT1 pathway. Exploring ferroptosis and miRNAs: implications for cancer modulation and therapy. Acid sphingomyelinase downregulation alleviates diabetic myocardial fibrosis in mice. METTL3: a multifunctional regulator in diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1