The metabolic basis of cancer-related fatigue

IF 7.5 1区 医学 Q1 BEHAVIORAL SCIENCES Neuroscience and Biobehavioral Reviews Pub Date : 2025-02-01 DOI:10.1016/j.neubiorev.2025.106035
Robert Dantzer , Brandon Chelette , Elisabeth G. Vichaya , A. Phillip West , Aaron Grossberg
{"title":"The metabolic basis of cancer-related fatigue","authors":"Robert Dantzer ,&nbsp;Brandon Chelette ,&nbsp;Elisabeth G. Vichaya ,&nbsp;A. Phillip West ,&nbsp;Aaron Grossberg","doi":"10.1016/j.neubiorev.2025.106035","DOIUrl":null,"url":null,"abstract":"<div><div>Although we are all familiar with the sensation of fatigue, there are still profound divergences on what it represents and its mechanisms. Fatigue can take various forms depending on the condition in which it develops. Cancer-related fatigue is considered a symptom of exhaustion that is often present at the time of diagnosis, increases in intensity during cancer therapy, and does not always recede after completion of treatment. It is usually attributed to the inflammation induced by damage-associated molecular patterns released by tumor cells during cancer progression and in response to its treatment. In this review, we argue that it is necessary to go beyond the symptoms of fatigue to understand its nature and mechanisms. We propose to consider fatigue as a psychobiological process that regulates the behavioral activities an organism engages in to satisfy its needs, according to its physical ability to do so and to the capacity of its intermediary metabolism to exploit the resources procured by these activities. This last aspect is critical as it implies that these metabolic aspects need to be considered to understand fatigue. Based on the findings we have accumulated over several years of studying fatigue in diverse murine models of cancer, we show that energy metabolism plays a key role in the development and persistence of this condition. Cancer-related fatigue is dependent on the energy requirements of the tumor and the negative impact of cancer therapy on the mitochondrial function of the host. When inflammation is present, it adds to the organism’s energy expenses. The organism needs to adjust its metabolism to the different forms of cellular stress it experiences thanks to specialized communication factors known as mitokines that act locally and at a distance from the cells in which they are produced. They induce the subjective, behavioral, and metabolic components of fatigue by acting in the brain. Therefore, the targeting of mitokines and their brain receptors offers a window of opportunity to treat fatigue when it is no longer adaptive but an obstacle to the quality of life of cancer survivors.</div></div>","PeriodicalId":56105,"journal":{"name":"Neuroscience and Biobehavioral Reviews","volume":"169 ","pages":"Article 106035"},"PeriodicalIF":7.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience and Biobehavioral Reviews","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0149763425000351","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Although we are all familiar with the sensation of fatigue, there are still profound divergences on what it represents and its mechanisms. Fatigue can take various forms depending on the condition in which it develops. Cancer-related fatigue is considered a symptom of exhaustion that is often present at the time of diagnosis, increases in intensity during cancer therapy, and does not always recede after completion of treatment. It is usually attributed to the inflammation induced by damage-associated molecular patterns released by tumor cells during cancer progression and in response to its treatment. In this review, we argue that it is necessary to go beyond the symptoms of fatigue to understand its nature and mechanisms. We propose to consider fatigue as a psychobiological process that regulates the behavioral activities an organism engages in to satisfy its needs, according to its physical ability to do so and to the capacity of its intermediary metabolism to exploit the resources procured by these activities. This last aspect is critical as it implies that these metabolic aspects need to be considered to understand fatigue. Based on the findings we have accumulated over several years of studying fatigue in diverse murine models of cancer, we show that energy metabolism plays a key role in the development and persistence of this condition. Cancer-related fatigue is dependent on the energy requirements of the tumor and the negative impact of cancer therapy on the mitochondrial function of the host. When inflammation is present, it adds to the organism’s energy expenses. The organism needs to adjust its metabolism to the different forms of cellular stress it experiences thanks to specialized communication factors known as mitokines that act locally and at a distance from the cells in which they are produced. They induce the subjective, behavioral, and metabolic components of fatigue by acting in the brain. Therefore, the targeting of mitokines and their brain receptors offers a window of opportunity to treat fatigue when it is no longer adaptive but an obstacle to the quality of life of cancer survivors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
14.20
自引率
3.70%
发文量
466
审稿时长
6 months
期刊介绍: The official journal of the International Behavioral Neuroscience Society publishes original and significant review articles that explore the intersection between neuroscience and the study of psychological processes and behavior. The journal also welcomes articles that primarily focus on psychological processes and behavior, as long as they have relevance to one or more areas of neuroscience.
期刊最新文献
The involvement of brain norepinephrine nuclei in eating disorders Cognitive reserve moderates the effect of COVID-19 on cognition: A systematic review and meta-analysis of individual participant data. Perceived stress in adults with epilepsy: A systematic review Causal relationship between B vitamins and neuropsychiatric disorders: A systematic review and meta-analysis An item-level systematic review of the presentation of ADHD in females
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1