Taylor J Bosch, Christopher Groth, Arturo I Espinoza, Vishal Bharmauria, Oliver Flouty, Arun Singh
{"title":"Cerebellar Oscillatory Patterns in Essential Tremor: Modulatory Effects of VIM-DBS.","authors":"Taylor J Bosch, Christopher Groth, Arturo I Espinoza, Vishal Bharmauria, Oliver Flouty, Arun Singh","doi":"10.1007/s12311-025-01787-1","DOIUrl":null,"url":null,"abstract":"<p><p>Essential tremor (ET) is a common movement disorder, and while ventral intermediate nucleus deep brain stimulation (VIM-DBS) is a well-established treatment, its precise mechanisms or modulatory effects, particularly in relation to cerebellar oscillations, remain unclear. In this study, we hypothesized that VIM-DBS would modulate cerebellar oscillatory activity across both resting and motor task conditions, reflecting its impact on cerebello-thalamic pathways. Ten patients diagnosed with ET participated in this study. We examined the effects of VIM-DBS on mid-cerebellar oscillations during resting-state and lower-limb pedaling motor tasks. Frequency analysis was conducted on the resting-state signal and time-frequency analysis was performed on motor task-related signals. We explored the modulatory effects of VIM-DBS on oscillatory activity across delta, theta, alpha, beta, and gamma frequency bands. We found that ON VIM-DBS increased mid-cerebellar relative theta power during resting-state conditions, with no significant changes in other frequency bands. During a pedaling motor task, VIM-DBS led to significant reductions in theta, alpha, and gamma power, highlighting the frequency-specific effects of stimulation. VIM-DBS also increased peak acceleration of leg movements during the pedaling task. Furthermore, VIM-DBS selectively increased mid-frontal relative theta and beta power as well as mid-occipital relative theta power during resting condition, suggesting localized mid-cerebellar modulation. Moreover, similarity analyses between mid-cerebellar and nearby mid-occipital signals revealed differences in coherence, phase coherence, and cross-spectrum phase coherence. Overall, these results support the role of VIM-DBS in modulating mid-cerebellar oscillations in ET and provide new insights into the neural mechanisms underlying DBS efficacy.</p>","PeriodicalId":50706,"journal":{"name":"Cerebellum","volume":"24 2","pages":"40"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebellum","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12311-025-01787-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Essential tremor (ET) is a common movement disorder, and while ventral intermediate nucleus deep brain stimulation (VIM-DBS) is a well-established treatment, its precise mechanisms or modulatory effects, particularly in relation to cerebellar oscillations, remain unclear. In this study, we hypothesized that VIM-DBS would modulate cerebellar oscillatory activity across both resting and motor task conditions, reflecting its impact on cerebello-thalamic pathways. Ten patients diagnosed with ET participated in this study. We examined the effects of VIM-DBS on mid-cerebellar oscillations during resting-state and lower-limb pedaling motor tasks. Frequency analysis was conducted on the resting-state signal and time-frequency analysis was performed on motor task-related signals. We explored the modulatory effects of VIM-DBS on oscillatory activity across delta, theta, alpha, beta, and gamma frequency bands. We found that ON VIM-DBS increased mid-cerebellar relative theta power during resting-state conditions, with no significant changes in other frequency bands. During a pedaling motor task, VIM-DBS led to significant reductions in theta, alpha, and gamma power, highlighting the frequency-specific effects of stimulation. VIM-DBS also increased peak acceleration of leg movements during the pedaling task. Furthermore, VIM-DBS selectively increased mid-frontal relative theta and beta power as well as mid-occipital relative theta power during resting condition, suggesting localized mid-cerebellar modulation. Moreover, similarity analyses between mid-cerebellar and nearby mid-occipital signals revealed differences in coherence, phase coherence, and cross-spectrum phase coherence. Overall, these results support the role of VIM-DBS in modulating mid-cerebellar oscillations in ET and provide new insights into the neural mechanisms underlying DBS efficacy.
期刊介绍:
Official publication of the Society for Research on the Cerebellum devoted to genetics of cerebellar ataxias, role of cerebellum in motor control and cognitive function, and amid an ageing population, diseases associated with cerebellar dysfunction.
The Cerebellum is a central source for the latest developments in fundamental neurosciences including molecular and cellular biology; behavioural neurosciences and neurochemistry; genetics; fundamental and clinical neurophysiology; neurology and neuropathology; cognition and neuroimaging.
The Cerebellum benefits neuroscientists in molecular and cellular biology; neurophysiologists; researchers in neurotransmission; neurologists; radiologists; paediatricians; neuropsychologists; students of neurology and psychiatry and others.