UV and NIR Dual-Band Photodetector Enabled by p-Type Perovskite and Semitransparent Microcavity

IF 6.5 1区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Photonics Pub Date : 2025-02-03 DOI:10.1021/acsphotonics.4c02233
Qingshan Fan, Keqiang Li, Hanqing Zhang, Chenyang Han, Zhanzheng Wang, Qiong Li, Zunmin Wan, Yu Zhou, Xiaodong Liu, Jiang Huang
{"title":"UV and NIR Dual-Band Photodetector Enabled by p-Type Perovskite and Semitransparent Microcavity","authors":"Qingshan Fan, Keqiang Li, Hanqing Zhang, Chenyang Han, Zhanzheng Wang, Qiong Li, Zunmin Wan, Yu Zhou, Xiaodong Liu, Jiang Huang","doi":"10.1021/acsphotonics.4c02233","DOIUrl":null,"url":null,"abstract":"Narrowband photodetectors (NPDs) are essential for surveillance, photometry, and remote sensing. However, few studies have demonstrated multiple narrowband detection abilities within a single PD, particularly in the ultraviolet (UV) and near-infrared (NIR) regions, which are not directly recognized by the human eyes. In this work, we present a method for UV and NIR dual-band photodetection on the same device through integrating tandem-like perovskite/organic bulk-heterojunction (P-OBHJ) with a translucent microcavity. By leveraging the self-doping effect of perovskites, we fabricated p-type MAPbI<sub>3</sub> films with the unbalanced electron–hole transport, enabling complete visible-light depletion upon bottom illumination. Meanwhile, NIR light passes through the entire perovskite layer to reach the OBHJ layers, ultimately resulting in a narrowband response to NIR light. Upon top illumination, the semitransparent microcavity selectively transmits only UV light, achieving narrowband UV detection. As a result, the optimized device exhibits the responsivity of 0.21 and 0.03 A/W with the corresponding shot-noise-limited specific detectivity reaching 4 × 10<sup>12</sup> and 6 × 10<sup>11</sup> Jones, at the peak wavelengths of 810 and 330 nm, respectively. Last, we showcase prototype applications of the dual-band PDs as heartbeat and solar UV intensity monitors, providing a novel strategy for the development of multifunctional NPD.","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"35 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1021/acsphotonics.4c02233","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Narrowband photodetectors (NPDs) are essential for surveillance, photometry, and remote sensing. However, few studies have demonstrated multiple narrowband detection abilities within a single PD, particularly in the ultraviolet (UV) and near-infrared (NIR) regions, which are not directly recognized by the human eyes. In this work, we present a method for UV and NIR dual-band photodetection on the same device through integrating tandem-like perovskite/organic bulk-heterojunction (P-OBHJ) with a translucent microcavity. By leveraging the self-doping effect of perovskites, we fabricated p-type MAPbI3 films with the unbalanced electron–hole transport, enabling complete visible-light depletion upon bottom illumination. Meanwhile, NIR light passes through the entire perovskite layer to reach the OBHJ layers, ultimately resulting in a narrowband response to NIR light. Upon top illumination, the semitransparent microcavity selectively transmits only UV light, achieving narrowband UV detection. As a result, the optimized device exhibits the responsivity of 0.21 and 0.03 A/W with the corresponding shot-noise-limited specific detectivity reaching 4 × 1012 and 6 × 1011 Jones, at the peak wavelengths of 810 and 330 nm, respectively. Last, we showcase prototype applications of the dual-band PDs as heartbeat and solar UV intensity monitors, providing a novel strategy for the development of multifunctional NPD.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Photonics
ACS Photonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.90
自引率
5.70%
发文量
438
审稿时长
2.3 months
期刊介绍: Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.
期刊最新文献
UV-Transparent Bifocal Meta-Lens for Spin-Space Multiplexing with High-Quality Aluminum Nitride Buffer UV and NIR Dual-Band Photodetector Enabled by p-Type Perovskite and Semitransparent Microcavity Stimulated Exciton–Polariton Scattering in Hybrid Halide Perovskites Acoustoplasmonic Metasurfaces for Tunable Acoustic Wavefront Shaping with Polarized Light Fabrication of Ultra-Low-Loss, Dispersion-Engineered Silicon Nitride Photonic Integrated Circuits via Silicon Hardmask Etching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1