Design High-Entropy Core-Shell Nickel-Rich Cobalt-Free Cathode Material Toward High Performance Lithium Batteries

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2025-02-02 DOI:10.1002/adfm.202423717
Boyang Zhao, Xia Sun, Hongwei Bi, Tingzhou Yang, Haipeng Li, Dan Luo, Yongguang Zhang, Zhongwei Chen
{"title":"Design High-Entropy Core-Shell Nickel-Rich Cobalt-Free Cathode Material Toward High Performance Lithium Batteries","authors":"Boyang Zhao,&nbsp;Xia Sun,&nbsp;Hongwei Bi,&nbsp;Tingzhou Yang,&nbsp;Haipeng Li,&nbsp;Dan Luo,&nbsp;Yongguang Zhang,&nbsp;Zhongwei Chen","doi":"10.1002/adfm.202423717","DOIUrl":null,"url":null,"abstract":"<p>The structural instability of lithium-based transition metal layered oxides during electrochemical cycling-exacerbated by phenomena such as metal dissolution and phase transitions-induces rapid capacity degradation, thus constraining their applicability in high-energy-density lithium batteries. While coating these materials can bolster stability, the employment of electrochemically inactive coatings may inadvertently undermine energy storage performance, presenting a significant trade-off. In response to this challenge, an innovative core-shell cathode architecture is presented, wherein high entropy doped LiNi<sub>1/6</sub>Mn<sub>1/6</sub>Al<sub>1/6</sub>Ti<sub>1/6</sub>Mo<sub>1/6</sub>Ta<sub>1/6</sub>O<sub>2</sub> serves as the shell and nickel-rich cobalt-free LiNi<sub>0.89</sub>Mn<sub>0.11</sub>O<sub>2</sub> constitutes the core, synthesized through a simple two-step co-precipitation methodology (designated as LHECNM). This high-entropy shell preserves the core's electrochemical performance while effectively mitigating phase transformations and transition metal ion dissolution, thereby enhancing structural robustness. Moreover, the core-shell configuration significantly diminishes the energy barrier for Li<sup>+</sup> diffusion, facilitating superior ion transport dynamics. Consequently, LHECNM demonstrates remarkable electrochemical performance, achieving a discharge capacity of 201.57 mAh g<sup>−1</sup>, a commendable rate capability up to 5C, and an impressive 92% capacity retention over prolonged cycling. This investigation elucidates a promising paradigm for the design of high-entropy cathode materials, offering profound insights for the advancement of future energy storage technologies.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"35 26","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202423717","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The structural instability of lithium-based transition metal layered oxides during electrochemical cycling-exacerbated by phenomena such as metal dissolution and phase transitions-induces rapid capacity degradation, thus constraining their applicability in high-energy-density lithium batteries. While coating these materials can bolster stability, the employment of electrochemically inactive coatings may inadvertently undermine energy storage performance, presenting a significant trade-off. In response to this challenge, an innovative core-shell cathode architecture is presented, wherein high entropy doped LiNi1/6Mn1/6Al1/6Ti1/6Mo1/6Ta1/6O2 serves as the shell and nickel-rich cobalt-free LiNi0.89Mn0.11O2 constitutes the core, synthesized through a simple two-step co-precipitation methodology (designated as LHECNM). This high-entropy shell preserves the core's electrochemical performance while effectively mitigating phase transformations and transition metal ion dissolution, thereby enhancing structural robustness. Moreover, the core-shell configuration significantly diminishes the energy barrier for Li+ diffusion, facilitating superior ion transport dynamics. Consequently, LHECNM demonstrates remarkable electrochemical performance, achieving a discharge capacity of 201.57 mAh g−1, a commendable rate capability up to 5C, and an impressive 92% capacity retention over prolonged cycling. This investigation elucidates a promising paradigm for the design of high-entropy cathode materials, offering profound insights for the advancement of future energy storage technologies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
设计高性能锂电池高熵核壳富镍无钴正极材料
锂基过渡金属层状氧化物在电化学循环过程中的结构不稳定性,以及金属溶解和相变等现象的加剧,导致了容量的快速退化,从而限制了其在高能量密度锂电池中的适用性。虽然涂层这些材料可以增强稳定性,但使用电化学不活跃的涂层可能会无意中破坏能量存储性能,这是一个重大的权衡。为了应对这一挑战,提出了一种创新的核壳阴极结构,其中高熵掺杂的LiNi1/6Mn1/6Al1/6Ti1/6Mo1/6Ta1/6O2为壳,富镍的无钴LiNi0.89Mn0.11O2为芯,通过简单的两步共沉淀法(称为LHECNM)合成。这种高熵壳保留了核心的电化学性能,同时有效地减轻了相变和过渡金属离子的溶解,从而增强了结构的稳健性。此外,核壳结构显著降低了Li+扩散的能量势垒,促进了优异的离子传输动力学。因此,LHECNM表现出卓越的电化学性能,实现了201.57 mAh g - 1的放电容量,值得称赞的倍率容量高达5C,并且在长时间循环中具有令人印象深刻的92%的容量保持率。这项研究阐明了高熵正极材料设计的一个有前途的范例,为未来储能技术的进步提供了深刻的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Superstrong Yet On-Demand Debondable Polyolefin Adhesives by Leveraging Bioinspired Nucleobase Interactions Digital Discovery of Synthesizable Metal−Organic Frameworks via Molecular Dynamics‑Informed, High‑Fidelity Deep Learning (Adv. Funct. Mater. 14/2026) Entropy-Stabilized Interface Coupling Activates Lattice Oxygen Inside Wood-Channel-Confined Electrocatalysts for Water Oxidation Copper-Based Crystalline-Metallic Glass Composite Thin Films: A Novel Material with Enhanced Strength and Thermally Stable Nanotwins Optimizing the Through-Space Conjugation of Vinyl Covalent Organic Frameworks via Bonding Defects Utilization for Enhanced Photocatalysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1