Bogyeom Seo, Tyler Bills, Paramasivam Mahalingavelar, Woojo Kim, Hyeong Ju Eun, Jong H. Kim, Jason D. Azoulay, Tse Nga Ng
{"title":"Mobility-Lifetime Products in Organic Infrared Photodiodes with Peak Absorption at 1550 nm","authors":"Bogyeom Seo, Tyler Bills, Paramasivam Mahalingavelar, Woojo Kim, Hyeong Ju Eun, Jong H. Kim, Jason D. Azoulay, Tse Nga Ng","doi":"10.1002/aelm.202400816","DOIUrl":null,"url":null,"abstract":"Infrared photodiodes based on organic semiconductors are promising for low-cost sensors that operate at room temperature. However, their realization remains hampered by poor device efficiency. Here, performance limitations are analyzed by evaluating the mobility-lifetime products and charge collection efficiency of devices operating in the shortwave infrared with a peak absorption at 1550 nm. Through complementary impedance and current-voltage measurements on devices with different donor-to-acceptor semiconductor ratios, a trade-off between mobility and recombination time and the need to balance between transport and interfacial charge transfer are observed. Thus, this study revisits the mobility-lifetime metric to shed new light on charge collection constraints in organic infrared photodiodes.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"123 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aelm.202400816","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Infrared photodiodes based on organic semiconductors are promising for low-cost sensors that operate at room temperature. However, their realization remains hampered by poor device efficiency. Here, performance limitations are analyzed by evaluating the mobility-lifetime products and charge collection efficiency of devices operating in the shortwave infrared with a peak absorption at 1550 nm. Through complementary impedance and current-voltage measurements on devices with different donor-to-acceptor semiconductor ratios, a trade-off between mobility and recombination time and the need to balance between transport and interfacial charge transfer are observed. Thus, this study revisits the mobility-lifetime metric to shed new light on charge collection constraints in organic infrared photodiodes.
期刊介绍:
Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.