{"title":"Ultralight Electrospun Composite Filters with Vertical Ternary Spatial Network for High-Performance PM0.3 Purification","authors":"Mengjuan Zhou, Songlin Zhang, Hongyu Guo, Xinchang Zhou, Jinhao Xu, Qingliang Luo, Xiangshun Li, Qingli Xu, Chengdong Xiong, Rongwu Wang, Jintu Fan, Xiaohong Qin, Swee Ching Tan","doi":"10.1002/adma.202419389","DOIUrl":null,"url":null,"abstract":"Air pollutants, particularly highly permeable particulate matter (PM), threaten public health and environmental sustainability due to extensive filter media consumption. Existing melt-blown nonwoven filters struggle with PM<sub>0.3</sub> removal, energy consumption, and disposal burdens. Here, an ultralight composite filter with a vertical ternary spatial network (TSN) structure that saves ≈98% of raw material usage and reduces fabrication time by 99.4%, while simultaneously achieving high-efficiency PM<sub>0.3</sub> removal (≥99.92%), eco-friendly regeneration (near-zero energy consumption), and enhanced wearing comfort (breathability >80 mm s⁻¹, infrared transmittance >85%), is reported. The TSN filter consists of a hybrid layer of microspheres (average diameter ≈1 µm)/superfine nanofibers (≈20 nm) sandwiched between two nanofiber scaffolds (diameter ≈400 nm and ≈100 nm). This arrangement offers high porosity (≈85%), ultralow areal density (<1 g m<sup>−2</sup>), alow airflow resistance (<90 Pa), guaranteeing superb thermal comfort. Notably, utilizing scalable one-step free surface electrospinning technology, TSN mats can be mass-produced at a rate of 60 meters per hour (width of 1.6 meters), which is critical and verified for various applications including window screens, individual respiratory protectors, and dust collectors. This work provides a viable strategy for designing high-performance nanofiber filter media through structural regulation in a scalable, cost-effective, and sustainable way.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"125 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202419389","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Air pollutants, particularly highly permeable particulate matter (PM), threaten public health and environmental sustainability due to extensive filter media consumption. Existing melt-blown nonwoven filters struggle with PM0.3 removal, energy consumption, and disposal burdens. Here, an ultralight composite filter with a vertical ternary spatial network (TSN) structure that saves ≈98% of raw material usage and reduces fabrication time by 99.4%, while simultaneously achieving high-efficiency PM0.3 removal (≥99.92%), eco-friendly regeneration (near-zero energy consumption), and enhanced wearing comfort (breathability >80 mm s⁻¹, infrared transmittance >85%), is reported. The TSN filter consists of a hybrid layer of microspheres (average diameter ≈1 µm)/superfine nanofibers (≈20 nm) sandwiched between two nanofiber scaffolds (diameter ≈400 nm and ≈100 nm). This arrangement offers high porosity (≈85%), ultralow areal density (<1 g m−2), alow airflow resistance (<90 Pa), guaranteeing superb thermal comfort. Notably, utilizing scalable one-step free surface electrospinning technology, TSN mats can be mass-produced at a rate of 60 meters per hour (width of 1.6 meters), which is critical and verified for various applications including window screens, individual respiratory protectors, and dust collectors. This work provides a viable strategy for designing high-performance nanofiber filter media through structural regulation in a scalable, cost-effective, and sustainable way.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.