Structurally Modulated NiV-LDH with CdMoSe-Quantum Dots: Unlocking the Active Centers at S-Scheme Heterojunctions for Stimulating Photocatalytic H2O2 Production and H2 Evolution

IF 4.3 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Inorganic Chemistry Pub Date : 2025-02-03 DOI:10.1021/acs.inorgchem.4c04513
Preeti Prabha Sarangi, Kundan Kumar Das, Jyotirmayee Sahu, Upali Aparajita Mohanty, Dipti Prava Sahoo, Kulamani Parida
{"title":"Structurally Modulated NiV-LDH with CdMoSe-Quantum Dots: Unlocking the Active Centers at S-Scheme Heterojunctions for Stimulating Photocatalytic H2O2 Production and H2 Evolution","authors":"Preeti Prabha Sarangi, Kundan Kumar Das, Jyotirmayee Sahu, Upali Aparajita Mohanty, Dipti Prava Sahoo, Kulamani Parida","doi":"10.1021/acs.inorgchem.4c04513","DOIUrl":null,"url":null,"abstract":"Designing and accumulating quantum dots (QD) onto layered double hydroxide (LDH) for the photocatalytic production of H<sub>2</sub> and H<sub>2</sub>O<sub>2</sub> is a formidable task. Here, we intended the synthesis procedure of CdMoSe-QD (CMS)-incorporated NiV-LDH (NV) through a facile in situ reflux method and explored the photocatalytic activities of the CMS/NV (CNV) heterostructure. CNV-1 exhibits a large interface contact area and assures excellent interfacial charge transfer ability. Moreover, CNV-1 exhibits outstanding H<sub>2</sub> and H<sub>2</sub>O<sub>2</sub> production rates, i.e., 6.4 and 2.5 times higher than that of pristine NV, respectively, due to formation of an S-scheme heterojunction between NV and CMS. Both NV and CMS function as n-type semiconductors and extend photoresponse to visible regions. The CNV-1 composite achieves 1.67% SCC for photocatalytic H<sub>2</sub>O<sub>2</sub> generation and 7.36% ACE for photocatalytic H<sub>2</sub> evolution. The excellent activity is ascribed to higher anodic photocurrent, the quantum confinement effect of CMS, large surface-active sites, and delayed recombination of excitons as supported by PL and EIS measurements. Further, the S-scheme mechanism was authenticated through a radical scavenging test and work function, evaluated by UPS measurement. Altogether, this study exemplifies the concepts of designing a CNV heterostructure, which operates via an n–n-based S-scheme mechanism and aims to enhance photocatalytic H<sub>2</sub> and H<sub>2</sub>O<sub>2</sub> production.","PeriodicalId":40,"journal":{"name":"Inorganic Chemistry","volume":"61 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.inorgchem.4c04513","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Designing and accumulating quantum dots (QD) onto layered double hydroxide (LDH) for the photocatalytic production of H2 and H2O2 is a formidable task. Here, we intended the synthesis procedure of CdMoSe-QD (CMS)-incorporated NiV-LDH (NV) through a facile in situ reflux method and explored the photocatalytic activities of the CMS/NV (CNV) heterostructure. CNV-1 exhibits a large interface contact area and assures excellent interfacial charge transfer ability. Moreover, CNV-1 exhibits outstanding H2 and H2O2 production rates, i.e., 6.4 and 2.5 times higher than that of pristine NV, respectively, due to formation of an S-scheme heterojunction between NV and CMS. Both NV and CMS function as n-type semiconductors and extend photoresponse to visible regions. The CNV-1 composite achieves 1.67% SCC for photocatalytic H2O2 generation and 7.36% ACE for photocatalytic H2 evolution. The excellent activity is ascribed to higher anodic photocurrent, the quantum confinement effect of CMS, large surface-active sites, and delayed recombination of excitons as supported by PL and EIS measurements. Further, the S-scheme mechanism was authenticated through a radical scavenging test and work function, evaluated by UPS measurement. Altogether, this study exemplifies the concepts of designing a CNV heterostructure, which operates via an n–n-based S-scheme mechanism and aims to enhance photocatalytic H2 and H2O2 production.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Inorganic Chemistry
Inorganic Chemistry 化学-无机化学与核化学
CiteScore
7.60
自引率
13.00%
发文量
1960
审稿时长
1.9 months
期刊介绍: Inorganic Chemistry publishes fundamental studies in all phases of inorganic chemistry. Coverage includes experimental and theoretical reports on quantitative studies of structure and thermodynamics, kinetics, mechanisms of inorganic reactions, bioinorganic chemistry, and relevant aspects of organometallic chemistry, solid-state phenomena, and chemical bonding theory. Emphasis is placed on the synthesis, structure, thermodynamics, reactivity, spectroscopy, and bonding properties of significant new and known compounds.
期刊最新文献
Structure-Induced Reversing Basicity of α-Anionic Fischer Carbenes Structurally Modulated NiV-LDH with CdMoSe-Quantum Dots: Unlocking the Active Centers at S-Scheme Heterojunctions for Stimulating Photocatalytic H2O2 Production and H2 Evolution Predicting Dinitrogen Activation by Boron Radical Cations Enhanced Anticancer Selectivity of Cyclometalated Imidazole/Pyrazole-Imine IridiumIII Complexes Through the Switch from Cationic to Zwitterionic Forms Sr2Zn(C3N3O3)2: An Alkaline Earth and d10 Transition Metal Based Ultraviolet Cyanurate with Large Birefringence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1